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Abstract 

In multilevel models, disaggregating predictors into level-specific parts (typically accomplished 

via centering) benefits parameter estimates and their interpretations. However, the importance of 

level-specificity has been sparsely addressed in multilevel literature concerning collinearity. In 

this study, we develop novel insights into the interactivity of centering and collinearity in 

multilevel models. After integrating the broad literatures on centering and collinearity, we review 

level-specific and conflated correlations in multilevel data. Next, by deriving formal 

relationships between predictor collinearity and multilevel model estimates, we demonstrate how 

the consequences of collinearity change across different centering specifications and identify 

data characteristics that may exacerbate or mitigate those consequences. We show that when all 

or some level-1 predictors are uncentered, slope estimates can be greatly biased by collinearity. 

Disaggregation of all predictors eliminates the possibility that fixed effect estimates will be 

biased due to collinearity alone; however, under some data conditions, collinearity is associated 

with biased standard errors and random effect (co)variance estimates. Finally, we illustrate the 

importance of disaggregation for diagnosing collinearity in multilevel data and provide 

recommendations for the use of level-specific collinearity diagnostics. Overall, the necessity of 

disaggregation for identifying and managing collinearity’s consequences in multilevel models is 

clarified in novel ways.  

 

Keywords: collinearity; multicollinearity; correlation; multilevel models; hierarchical linear 
models; centering 
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Collinearity  

Collinearity is broadly defined as interdependency, redundancy, or shared variance among 

predictors in a data set. Exact collinearity exists if there are one or more perfect linear 

relationships among the predictors, however this is rarely observed in applied settings (Silvey, 

1969; Willan & Watts, 1978). Therefore, in practice, collinearity refers to near collinearity, 

which exists when there are nearly or approximately perfect linear relationships among 

predictors (Belsley, 1991; Gunst & Mason, 1977). Instead of declaring that collinearity is present 

or not present in a data set, we should acknowledge that it always exists to some degree, and our 

goal is to understand the severity of its effects (Farrar & Glauber, 1967; Yu et al., 2015). These 

ideas and definitions were originally developed in the context of single-level regression; 

however, they have been applied without modification to multilevel settings (e.g., Clark, 2013; 

Kreft & De Leeuw, 1998; Shieh & Fouladi, 2003; Yu et al., 2015). 

In single-level regression, the impacts of collinearity are well understood. Its primary 

consequence is large standard errors (SEs) of the slope estimates associated with the collinear 

predictors. If a predictor is highly collinear with other predictor(s), the variance (and 

accordingly, SE) of its slope estimate will increase; we become less able to distinguish its unique 

contribution to explaining variance in the outcome, and therefore its contribution is estimated 

with less precision (Farrar & Glauber, 1967; Willan & Watts, 1978). A related consequence is 

that the slope estimates associated with collinear predictors will be highly variable from sample 

to sample and often assume substantively impossible values. Additionally, large SEs result in 

reduced power to detect effects (Dormann et al., 2013; O’Brien, 2007).  

Methodologists have debated the extent to which it is useful to investigate, diagnose, and 

attempt to remedy collinearity problems. First, in single-level regression, although collinearity 
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causes large SEs, these SEs are not biased, which has informed arguments that we need not 

consider them problematic (Goldberger, 1991). Second, collinearity is just one of many possible 

causes of large SEs, which has led some methodologists to argue that the dangers of collinearity 

are often exaggerated (e.g., Mason & Perreault, 1991; O’Brien, 2007). Other factors, including 

sample size, variances of the predictors and outcome, and the predictors’ explanatory power 

(𝑅 ), play equally important roles in determining the SEs of regression estimates. Rather than 

blame exclusively collinearity for large SEs, it is necessary to consider its interactions with these 

other data and model characteristics (Hayo, 2018). Third, it is often argued that observed 

collinearity reflects the natural state of the system under study, and therefore, attempts to remedy 

it are futile (Goldberger, 1991; however, collinearity in a data set does not always reflect 

collinearity in the population, such as due to range restriction in the sample). On the other hand, 

investigating collinearity often yields actionable insight. It may spur the researcher to consider 

whether redundant variables are each theoretically important, leading to a more parsimonious 

model. We can contrast this with the other factors that contribute to SEs, such as 𝑅 , that are 

largely outside the researcher’s control. Most importantly, arguments for and against the 

relevance of collinearity are rooted in knowledge of single-level, ordinary least squares (OLS) 

regression. Due to very limited knowledge of collinearity’s effects on multilevel models, it is 

unclear whether similar arguments could be made in multilevel settings. To inform a balanced 

discussion of whether and how collinearity should be diagnosed and remedied in multilevel 

settings, we must understand how collinearity impacts multilevel models in the first place.  

The effects of collinearity are most relevant when the purpose of analysis is to make 

inferences about the estimated regression coefficients. This may not always be the central goal of 

a statistical model. For example, in machine learning applications, models may include many 
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predictors whose individual slopes are not of concern in terms of significance or meaning; rather, 

the whole model’s ability to predict y is optimized. In other applications, it is critically important 

to examine and interpret each estimated regression coefficient; its statistical significance, point 

estimate, and confidence interval will be used to inform later hypotheses and theory. The latter 

scenario is more typical of social science research, and therefore, throughout this study we 

assume the primary goal is to make inferences about regression coefficients.  

Collinearity in Multilevel Models  

In this study, we focus our attention to multilevel modeling applications in which it is 

substantively important to model relations both within and across units of clustering. For 

example, in educational studies of students nested within classrooms or schools, it is often 

essential to disaggregate the effects of key variables; this is useful for identifying “effective 

schools” in terms of average student outcomes (Raudenbush & Willms, 1995) or for isolating the 

effects of an intervention at either the student or the classroom level. This is not always the case 

for multilevel data sets; in some applications, nesting structure is treated as a nuisance factor and 

it is not substantively relevant to model level-specific relations. Here we assume that it is 

theoretically important to consider the hierarchical structure of the data, and as such, it is 

essential to consider level-specific relations separately (Snijders & Bosker, 2012).   

The consequences of collinearity have been scarcely studied in the context of multilevel 

models. Empirical observations were the first to suggest that collinearity may have similar 

consequences in multilevel models as it does in single-level regression, namely, large SEs and 

unstable point estimates (Bonate, 1999; Kreft & de Leeuw, 1998; Kubitscheck & Hallinan, 

1999). Since then, a few simulation studies have more systematically investigated how 

collinearity impacts multilevel models. Typically, outcomes of interest are point estimates and 



  6

their relative bias (for both fixed effects and random effect (co)variances) and SEs of the fixed 

effect estimates. 

Regarding collinearity’s consequences for SEs, findings indicate that as predictor correlation 

increases, SEs of fixed effect estimates also increase. Some studies report increases in SEs 

without commenting on their bias (Clark, 2013; Yu et al., 2015). Others report that SEs become 

upwardly biased as predictor collinearity increases (Blaze & Ye, 2012; Shieh & Fouladi, 2003); 

estimated SEs were larger than the true standard deviation of the fixed effect estimates across 

iterations. In multilevel models it remains unclear to what degree large SEs are due to a true 

increase in the sampling variability of the estimates, estimation bias, or both. 

Findings with respect to random effects are less consistent. In a standalone empirical 

example, Hendrickx (2018) suggested that collinearity may cause greater instability in random 

effect (co)variance estimates than fixed effect estimates. Two simulation studies have reported 

outcomes regarding the bias of variance estimates, but their results are contradictory. Shieh and 

Fouladi (2003) observed that as predictor correlation increased at level 1, most variance 

estimates exhibited small-to-moderate downward bias. In contrast, Yu et al. (2015) reported no 

bias in any variance estimates across all collinearity conditions at level 1 or level 2. They 

attributed this result to their use of restricted maximum likelihood (REML) estimation (Shieh & 

Fouladi used iterative generalized least squares); however, this result has yet to be replicated. 

Whether collinearity leads to biased estimates of variance components remains an unresolved 

question. The current study will address this issue. 

Simulations have begun to probe the conditions under which the consequences of collinearity 

may be exacerbated or mitigated in multilevel data. The design factors most commonly varied 

are cluster size, number of clusters, and the intraclass correlation of the outcome (ICC ). 
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Findings with respect to sample size are consistent: all else being equal, as cluster size and 

number of clusters increases, the harmful effects of collinearity are mitigated. Findings regarding 

ICC  remain inconclusive. Shieh and Fouladi (2003) found no effect of ICC , whereas other 

studies (Blaze & Ye, 2012; Yu et al., 2015) observed that, all else being equal, the effects of 

collinearity were mitigated as ICC  increased. The effects of many other important design factors 

remain unknown. For example, there is speculation that strong correlations among the random 

effects may be important to consider alongside observed predictor collinearity (Stinnett, 1994; 

Zhang & Chen, 2013), however this has never been systematically examined. Additionally, Mela 

and Kopalle (2002) showed that the sign of the predictor correlation can exert asymmetric effects 

on bias and SEs in single-level regression, but direction of predictor collinearity has never been 

studied in the context of multilevel models. 

Across simulation studies, findings regarding the bias of fixed effect estimates have been 

consistent; fixed effect estimates remain unbiased despite any collinearity present at either level. 

Such results are consistent with the single-level regression case. The current literature suggests 

that this finding is conclusive; however, major limitations of past work – specifically, a lack of 

attention to centering and disaggregation across levels – call this conclusion into question. 

Collinearity and Centering in Multilevel Models  

In the broader multilevel modeling literature, the importance of centering and level-

specificity has been discussed at length. Methodologists often advocate for disaggregating 

predictors into their level-specific (i.e., level 1 and level 2) components (Cronbach & Webb, 

1975; Curran & Bauer, 2010; Hofmann & Gavin, 1998; Kenny & La Voie, 1985; Robinson, 

1950). This is typically accomplished by centering level-1 predictors around their cluster means 

(as cluster mean centering isolates the “pure” level 1 component of the predictor) and including 
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cluster means themselves as predictors at level 2 (as cluster means are the “pure” level 2 

component of the predictor). Under disaggregation, slopes are also level-specific and can be 

interpreted as within- and between-cluster effects. When uncentered predictors are used in 

isolation (when disaggregation is not conducted), this yields “conflated” slope estimates that are 

uninterpretable mixes of within- and between-cluster slopes (Enders & Tofighi, 2007; 

Raudenbush & Bryk, 2002; Yaremych et al., 2021). Conflated slope estimates are systematically 

affected by many arbitrary factors, including sample size at each level, ICC , and predictor ICCs 

(Lüdtke et al., 2008; Raudenbush & Bryk, 2002). 

The importance of centering has received little attention in the multilevel literature 

concerning collinearity. Most simulation studies have either briefly mentioned or not discussed 

centering, often making it unclear whether uncentered or level-disaggregated predictors were 

under study. This is concerning because it is well-documented that centering choice has direct 

consequences for parameter estimates and their substantive interpretations. Thus, we can expect 

that the consequences of collinearity will differ in important ways according to centering choice. 

Additionally, contradictory methodological recommendations highlight the need for clarification 

of how centering choice may impact the nature of collinearity itself. Hendrickx (2018) argued 

that collinearity should be examined among the “untransformed” variables in multilevel settings 

and discouraged any type of centering, whereas Bickel (2007) suggested grand mean centering as 

the best approach to reduce collinearity problems in multilevel models, borrowing arguments 

from single-level settings without modification. How collinearity and its consequences may 

change according to centering choice is an open question that has yet to be addressed. 

Centering and disaggregation also have been ignored in discussions of diagnosing 

collinearity in multilevel data. In multilevel data, collinearity can arise both within and between 
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clusters; therefore, we can expect that successfully identifying collinearity problems will hinge 

on whether they are diagnosed accurately at each level. However, no extant work has discussed 

the importance of level-specificity in collinearity diagnosis. Diagnostics developed in single-

level settings, such as the Variance Inflation Factor (VIF) and condition number (𝜅), have been 

applied to multilevel data without modification or consideration of centering. 

Study Goals  

The purpose of this study is to integrate the topics of centering and collinearity in multilevel 

models and develop novel insights into their interactivity. To this end, the study has three 

primary goals. First, we demonstrate how different centering choices for level-1 predictors (i.e., 

the use of uncentered vs. level-disaggregated predictors) lead to different impacts of collinearity 

in terms of biased point estimation, magnitudes of SEs, and biased SEs. Based on 

aforementioned findings in the centering literature, we expect that predictor collinearity will be 

yet another data characteristic that systematically affects conflated slope estimates. In contrast, 

we hypothesize that level-specific slope estimates will not be affected by collinearity alone. In 

other words, we anticipate that point estimates will vary as a function of predictor collinearity in 

the conflated model, but not in the disaggregated model. We will also explore how collinearity 

affects point estimates in a partially disaggregated model, where some level-1 predictors are 

disaggregated whereas others are not. Second, we clarify how other data characteristics, 

including ICC , predictor ICCs, and correlations among the random effects, may exacerbate or 

mitigate the effects of predictor collinearity across different centering specifications. Third, we 

demonstrate the importance of disaggregation for the diagnosis of collinearity in multilevel data 

and provide recommendations for diagnosing collinearity in a level-specific manner. 

Analytic Developments 
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The Population Model 

To preface our discussion of within- and between-cluster correlations and effects, we begin 

with a population model similar to that presented by Snijders and Bosker (2012). In this model 

we consider a level-1 outcome variable 𝑦  and a pair of level-1 predictors, 𝑥  and 𝑥 , each of 

which is a level-1 observation i within cluster j. For each variable, there is a population mean 

(denoted 𝜇 , 𝜇 , 𝜇 ), a latent main effect of cluster j (denoted 𝑈 , 𝑈 , 𝑈 ), and an 

individual-level deviation from that effect (denoted  𝑒 , 𝑒 , 𝑒 ). Individual-level deviations 

are assumed to follow a normal distribution with mean zero, e.g., N(0, 𝜎 ).  

1 1 1 2 2 21 2; ;
j ij j ijij y yj yij ij x x x ij x x xy U e x U e x U e              (1) 

The within-cluster effects of the predictors are denoted  𝛽 ,𝛽 , and are obtained from 

regressing 𝑦  on within-group deviations from each cluster mean:  

   1 1 2 21 1 2 2j jij y yj W ij x x W ij x x yijy U x U x U e                (2) 

The population between-cluster effects of the predictors are denoted  𝛽 ,𝛽 . These effects 

are obtained by regressing the grand-mean-centered population group mean of 𝑦  on the grand-

mean-centered population group means of the predictors. Population group means are latent (i.e., 

unobservable), and therefore, population between-cluster effects are also latent. Latent means are 

assumed to follow a multivariate normal distribution. 

1 21 2j jyj B x B x yjU U U e    , where 𝑒  is a group-level residual.   (3) 

Between-cluster effects can also be estimated from observed group means, which are denoted 

by 𝑦 , �̅� , and �̅� . Latent group means are not the same as observed group means, as observed 

group means inherently contain measurement error (Snijders & Bosker, 2012). A population 
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(i.e., latent) group mean is related to an observed group mean by the reliability of the observed 

group mean; when the reliability of the observed group mean is 1, the two means are equal. 

When we work with sample data, population means are replaced with sample means (i.e., 

observed group means). The models presented later in this paper therefore involve observed 

group means. 

Note that level-specific effects (i.e., within- and between-cluster effects) are obtained by 

disaggregating the level-1 predictor into its level-specific components. The cluster mean centered 

predictor (its level-1 component) yields the within-cluster effect, whereas the cluster mean of the 

predictor (its level-2 component) yields the between-cluster effect. 

Multilevel Covariance and Correlation 

We next discuss covariance and correlation at the between-cluster level, the within-cluster 

level, and conflated across levels (termed total correlations and total covariance) in multilevel 

data. Because collinearity is often defined in terms of predictor correlations, it is important to 

demonstrate how total and level-specific correlations arise and how they are related to one 

another. To do so, we integrate two lines of work that have addressed this issue separately.  

Building upon the original work of Robinson (1950), Gale (1987) and Snijders and Bosker 

(2012) presented expressions for the correlation of level-1 variables, 𝑥  and 𝑥 , at each level 

of analysis. For a given cluster j, we define the following sums of squares:  

   
1 2

2 2

1 1 2 2
1 1

;
j j

j j

n n

x ij j x ij j
i i

SS x x SS x x
 

            (4) 

For a given cluster j, we can compute the within-cluster correlation using each observation’s 

deviation from the cluster mean:  

      1 2

1/2 1/2

1 1 2 2
1

j

j j

n

j ij j ij j x x
i

r x x x x SS SS


         (5) 
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The overall within-cluster correlation, 𝑟 , is then a weighted average of the within-cluster 

correlations from clusters j = 1, 2, … J:  

   1 2 1 2

1/2 1/2
1/2 1/2

1 1 1
j j j j

J J J

W j x x x x
j j j

r r SS SS SS SS
  

   
    

   
       (6) 

Similarly to between-cluster regression effects, the between-cluster correlation, 𝑟 , is 

computed differently if population (i.e., latent) group means or observed group means are used. 

If the reliabilities of the group means are 1, then these correlations are equivalent. Here, for 

simplicity, we assume this is the case1. Therefore, 𝑟  is given by the following equation, where 

�̅�  and �̅�  denote the observed grand mean of 𝑥  and 𝑥 , respectively:  

      
1/2 1/2

2 2

1 1 2 2 1 1 2 2
1 1 1

J J J

B j j j j j j j
j j j

r n x x x x n x x n x x
  

   
       

   
     (7) 

The total correlation, 𝑟 , is a combination of 𝑟  and 𝑟 . Importantly, 𝑟  is the correlation that 

arises among uncentered level-1 variables. 𝑟  is given by:  

 
1 2 1 2

ICC ICC 1 ICC 1 ICC
ij ij ij ijT x x B x x Wr r r         (8) 

Where ICC  and ICC  are the intraclass correlations of 𝑥  and 𝑥 , respectively. This 

formula pertains to only one total correlation at a time and has not been generalized to a full 

correlation matrix, 𝐑𝐓. 

Second, Muthén (1990) demonstrated how the total covariance matrix for level-1 variables in 

multilevel data, TΣ , is related to the between-cluster covariance matrix, BΣ , and the within-

cluster covariance matrix, W , via a simple sum: 

 
1 See Snijders and Bosker (2012), section 3.6.2, for greater detail. 
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T B W Σ Σ Σ .           (9) 

In the sample this is denoted TS = BS + WS . 

In Appendix A, we standardize Muthén’s total covariance matrix TΣ  to yield a total 

correlation matrix, 𝐑𝐓, and show that the off-diagonal elements of this matrix (i.e., the total 

correlation coefficients) are equal to those derived for a single correlation coefficient (Gale, 

1987; Snijders & Bosker, 2012). In other words, the formula for a total correlation coefficient 

agrees with pairwise correlations obtained from standardizing Muthén’s total covariance matrix. 

We also show that a total (i.e., conflated) correlation coefficient can be expressed in two 

equivalent ways. The first is Eq. 8, and the second is: 

 
1 2 1 2

1 2 1 2cov( , ) cov( , )

ij ij ij ij

ij ij B ij ij W
T

x x x x

x x x x
r

SD SD SD SD
         (10) 

Where cov 𝑥 , 𝑥  arises from cluster means’ deviations around the grand mean, and 

cov 𝑥 , 𝑥  arises from individual observations’ deviations around their respective cluster 

means. Eqs. 8 and 10 are equivalent. 

Both representations of the conflated correlation coefficient can aid our understanding of the 

factors that determine its value. Beginning with Eq. 8, 𝑟  can be understood as a weighted 

combination of 𝑟  and 𝑟 . The between-cluster correlation, 𝑟 , is weighted by 
1 2

ICC ICC
ij ijx x , 

indicating that 𝑟  receives more weight as the ICC of each variable increases, and as ICCs of 

both variables approach 1, 𝑟  approaches 𝑟 . Similarly, 𝑟  is weighted by
1 2

1 ICC 1 ICC
ij ijx x  , 

indicating that 𝑟  receives more weight as the ICC of each variable decreases, and as ICCs of 

both variables approach 0, 𝑟  approaches 𝑟 . Next, Eq. 10 suggests the total dependence 

between 𝑥  and 𝑥  can be understood as the sum of two parts: the proportion of that 
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dependence that occurs between clusters (i.e., between-cluster covariance divided by total 

dispersion of each predictor), and the proportion of that dependence that occurs within clusters 

(i.e., within-cluster covariance divided by total dispersion of each predictor). 

Eqs. 8 and 10 also lend insight into the situations in which 𝑟  is meaningful or meaningless. 

It becomes clear that 𝑟  = 𝑟  when the ICC of each variable is 1, and 𝑟  = 𝑟  when the ICC of 

each variable is 0. Otherwise, even if 𝑟  = 𝑟 , 𝑟  will be equal to neither level-specific 

correlation. For example, let 𝑟  = 𝑟  = .5. Suppose that most of 𝑥 ’s variance is within clusters, 

such that 𝐼𝐶𝐶 = .03, whereas most of 𝑥 ’s variance is between clusters, such that 𝐼𝐶𝐶 = 

.60. Then, according to Eq. 8, 𝑟  = .37. The total correlation is misleading, as are any 

conclusions informed by it, even if level-specific correlations are equal. 

Thus, in most cases, 𝑟  will be an uninterpretable weighted combination of level-specific 

correlations. In many situations, even if each level-specific correlation is strong, 𝑟  may suggest 

that there is no significant relation among the variables. Additionally, when 𝑟  and 𝑟  are the 

same sign, 𝑟  need not lie between them and may be closer to zero than both (Gale, 1987; 

Snijders & Bosker, 2012). See Online Appendix A for details about the conditions that yield this 

pattern. Overall, the lack of interpretability of the conflated correlation is exposed here.  

Consequences of Collinearity for Multilevel Model Estimation: 𝜷𝑮𝑳𝑺 Derivation 

A primary goal of this study is to demonstrate analytically how collinearity’s consequences 

change across different centering specifications. Here, we focus on the conflated model, wherein 

uncentered level-1 predictors are used in isolation. Past work mathematically shows conflated 

slope estimates to be affected by a variety of extraneous data characteristics; here we show that 

collinearity among predictors (operationalized as covariance) is yet another data characteristic to 

systematically affect these estimates. Currently, most insight into how extraneous data 
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characteristics influence conflated slope estimates comes from a classic derivation by 

Raudenbush and Willms (1995). Assuming a balanced design, they show: 

1 1
* 1 2
10 1 2

1 2

ˆ ˆ
ˆ ˆ; var( ) ; var( )B W

B W

W W
W W

W W

   
          

     (11) 

Where 𝛽  is the estimated between-cluster effect and 𝛽  is the estimated within-cluster 

effect. The conflated slope estimate is a weighted average of level-specific effects, where the 

weights reflect the precision of each estimate. It follows that factors influencing the precision of 

each level-specific estimate (e.g., sample size, ICC ) systematically affect the conflated slope 

estimate. Eq. 11 pertains to a single slope estimate rather than those of multiple, potentially 

collinear, predictors. A more general expression is needed to accommodate any number of 

predictors and their potential interrelations. We derive that expression here. 

Multilevel models are typically estimated via maximum likelihood (ML), but ML estimates 

are algebraically intractable. The generalized least squares (GLS) estimator is algebraically 

tractable and yields conflated slope estimates that are asymptotically equivalent to ML estimates 

(Raudenbush & Bryk, 2002). Therefore, in this section we employ the GLS estimator as the basis 

for our analysis. The estimator was first introduced because it is more efficient than OLS 

estimation when 𝛽 𝛽 . Scott and Holt (1982) defined the estimator as follows: 

1

1 1 1 1

ˆ
1 ( 1) 1 1 ( 1) 1

T T T TJ J J J
Bj Bj Wj Wj Bj j Wj j

GLS
j j j jj j

X X X X X Y X Y

n n


   



   

                       
    ,  (12) 

where J is the number of clusters, 𝑛  is cluster size for cluster j, 𝜌 is ICC , 𝑋  is a vector of 

cluster means for cluster j, and 𝑋  is a vector of cluster mean centered predictors for cluster j. 

Eq. 12 illuminates how a conflated slope estimate for a single predictor can be derived. The 

authors note that the formula could be scaled up to multiple predictors; however, this has never 
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been shown. After adapting Scott and Holt’s (1982) notation to conform to notation now in 

common use (e.g., Snijders & Bosker, 2012), we derived the maximally general form of the GLS 

estimator, which allows for any number of predictors, any number of clusters, and potentially 

variable cluster size. (See Appendix B for details of the derivation): 

     
         

   

1
1 1

1 1 1
1

1 1

1

1 1 1 1
ˆ

1 1 1 1 1

1 ( 1) 1
j j j j

J j j j j j

GLS
j

j j j j j j j j j j j j

J T T

j n n j j n j n j j
j

n n n n

n n n n n

n Y Y

 


  

 

 

  


 



       
   

          
  
                  





x

x x x X X x x

1 1 x 0 X 1 x

(13) 

where 𝟏  is a 𝑛  1 column vector of 1’s, 𝟎  is a 𝑛  1 column vector of 0’s, 
jx  is a column 

vector of cluster means in cluster j whose first element is 1 as a multiplier for the intercept, 
jX  is 

the original data matrix in cluster j whose first column is 1 as a multiplier for the intercept, and 𝑌  

is a column vector of outcomes in cluster j. This derivation transforms Scott and Holt’s (1982) 

original formula from scalar notation to matrix notation. Thus, we show how a vector of multiple 

conflated slope estimates (𝛽 ) can arise. 

From the maximally general form of the GLS estimator, we next show that conflated slope 

estimates are systematically biased by covariance (i.e., collinearity) among predictors at each 

level. To do so, we demonstrate that Eq. 13 can be expressed in terms of between- and within-

cluster covariance matrices of the predictors. Equations for the sample between-cluster 

covariance matrix, 𝐒 , and the sample pooled within-cluster covariance matrix, 𝐒 , were 

introduced by Muthén (1990) as:  

  1
. .. . ..

1

( 1)
J

B j j j
j

J n x x x x



   S        (14) 
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  1
. .

1 1

( )
jnJ

PW ij j ij j
j i

N J x x x x

 

   S       (15) 

where N is total sample size, 𝑥  is a level-1 observation, . jx  is a cluster mean in cluster j, and ..x  

is the grand mean.  

In Appendix C, after assuming equal cluster sizes for simplicity, we show that a key 

between-cluster component of Eq. 13 can be expressed in terms of Muthén’s 𝐒 : 
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And we show the within-cluster component of Eq. 13 can be expressed in terms of 𝐒 : 
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Where 𝒛  is a vector of cluster means in cluster j, excluding the 1 in the first element, and 𝒁  is 

the original data matrix in cluster j, excluding the first column of 1’s. In summary, both the 

between- and within-cluster covariance matrices of predictors appear in the maximally general 

form of the GLS estimator. Therefore, we have proven that predictor covariance (i.e., 

collinearity) directly informs conflated slope estimates. 

Effect of Collinearity at Each Level 

As demonstrated above, the maximally general form of the GLS estimator can be expressed 

in terms of the between- and within-cluster covariance matrices of predictors. Interestingly, only 

level-specific (co)variances appear in Eqs. 16 and 17. This indicates that even if level-specific 

slopes are not being estimated, level-specific predictor collinearity is a factor that systematically 
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“pushes around” point estimates. Therefore, in all cases it will be essential to diagnose 

collinearity in a level-specific manner. 

In single-level settings, properties of the 𝐗′𝐗 matrix have been exploited to show how the 

sampling variances of parameter estimates are enlarged by collinearity. In OLS regression, 

collinearity does not bias point estimation. We have shown that in multilevel models, this 

property does not always apply. When uncentered predictors are used in isolation in the 

multilevel model, predictor collinearity plays a role in determining the point estimates 

themselves – not just their precisions. 

Effects of Other Data Characteristics 

Our derivations illuminate how other data characteristics will interact with predictor 

covariance to either exacerbate or mitigate the effects of collinearity at each level. We begin with 

ICC  (denoted with 𝜌 in Eqs. 13, 16, and 17). Accounting for all weights in Eq. 17, 𝐒  is 

weighted by     1
1N J    . This term increases as ICC  increases. However, Eq. 13 indicates 

that the matrix containing this term is ultimately inverted. Accounting for all inversions, as ICC  

increases, within-cluster covariance is given less weight. Therefore, we expect that any harmful 

effects of collinearity at the within-cluster level will be mitigated by a higher ICC  and 

exacerbated by a lower ICC . 

Between-cluster covariance is weighted by a more complex term. Simplifying Eq. 16, 𝐒  is 

weighted by      1
1 1 1J n 


   . This term decreases as ICC  increases. However, again, the 

matrix containing this term is inverted in Eq. 13. After accounting for all inversions, the term 

involving between-cluster covariance is given more weight as ICC  increases. As a result, we 

expect that the harmful effects of collinearity at the between-cluster level will be exacerbated by 



  19

higher ICC . However, because this weight is not purely informed by ICC  and involves other 

important quantities, the influence of ICC  may not be as direct as that at the within-cluster level. 

Finally, sample sizes at both levels appear in the GLS estimator. 𝐒  is weighted by a term 

involving total sample size (N) and number of clusters (J), whereas the weight associated with 

𝐒  contains number of clusters (J) and cluster size (n). All these terms increase as sample size 

increases. However, accounting for the fact that these terms are ultimately inverted, both within- 

and between-cluster covariance receive less weight as sample size increaes. As expected, larger 

sample size will mitigate the harmful effects of collinearity at either level in multilevel data. 

Importance of Disaggregation for Collinearity Diagnostics 

In addition to demonstrating that collinearity biases fixed effect estimates when predictors 

are uncentered, we can also demonstrate the consquences of attempting to diagnose collinearity 

on uncentered predictors. Here we combine what we have shown regarding multilevel 

covariance and correlation, together with the mathematics underlying common collinearity 

diagnostics, to gain insight into diagnostics’ behavior when applied to uncentered predictors vs. 

predictors that have been disaggregated into level-specific components. 

Variance Inflation Factors (VIFs) 

In single-level regression, perhaps the most popular collinearity diagnostic is the VIF. A VIF 

is computed for each predictor 𝑥 , and is defined as the multiplicative factor by which the 

variance of the regression coefficient associated with that predictor, 𝑣𝑎𝑟 𝛽 , has increased due 

to collinearity in the sample. VIFs can be calculated in two equivalent ways. The first is to 

regress 𝑥  on all other predictors in the model, find the multiple 𝑅  from that regression, and 

compute 1/ 1 𝑅 . The second is to obtain the correlation matrix of predictors, 𝐑, invert it to 

obtain 𝐑 𝟏, and extract the diagonal elements of 𝐑 𝟏, which are the VIF for each predictor. 
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Given this knowledge, we can draw conclusions about VIFs’ behavior in multilevel data when 

predictors are conflated vs. disaggregated across levels. 

The centering method chosen for the predictors directly informs their correlation matrix and 

the resulting VIFs. Disaggregation results in level-specific sets of predictors that are uncorrelated 

across levels; VIFs are informed by 𝐑𝐖 and 𝐑𝐁, yielding two sets of VIFs that are level-specific 

and mutually independent. However, if uncentered predictors are used, VIFs are informed by 

𝐑𝐓. The correlations within 𝐑𝐓 are weighted combinations of between- and within-cluster 

correlations and are almost always uninterpretable. As a result, collinearity diagnostics informed 

by 𝐑𝐓 are also uninterpretable and misleading. In situations where 𝐑𝐓 suggests weak 

relationships even though level-specific correlations are strong, VIFs will not indicate 

collinearity problems, and those problems will go undetected. Thus, we cannot assert that 

disaggregating predictors necessarily reduces collinearity in the data or its associated VIFs. 

Rather, disaggregation enables identification of level-specific collinearity problems that are 

meaningful and relevant to estimation. Level-specific collinearity is a determinant of point 

estimates in all cases (even in the conflated model), so it is essential to diagnose collinearity in a 

level-specific manner in order to understand how parameter estimates and their precision have 

been impacted. 

Condition Number () 

Another popular collinearity diagnostic is the condition number (𝜅). 𝜅 is predicated on the 

fact that, given an eigen-decomposition of a symmetric matrix, eigenvalues of zero indicate exact 

linear dependencies within the matrix. Eigenvalues near zero indicate near linear dependencies. 

𝜅 is computed via an eigen-decomposition of 𝐗 𝐗 (where 𝐗 is the observed predictor set), 

yielding the eigenvalues 𝜆 , 𝜆 , 𝜆 , … , 𝜆 . 𝜅 is given by: 𝜅  𝜆 𝜆⁄  . Greater 
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dissimilarity of 𝜆  and 𝜆  indicates greater linear dependency within the data matrix, so 

larger 𝜅 indicates stronger collinearity. 𝜅 is calculated from standardized data (i.e., all variables 

are scaled to have unit variances), so variable scales are irrelevant. 

For eigenvalue-based diagnostics, Belsley (1991) demonstrated the benefits of orthogonal (or 

nearly orthogonal) subsets of predictors: when one set of predictors is orthogonal to a second set, 

any collinearity present in the first set will have no effect on the collinearity diagnostics or SEs 

associated with the second set. This property is directly relevant to multilevel data, where 

disaggregation results in level-specific sets of predictors that are orthogonal. If predictors are 

disaggregated into their level-specific parts, then any collinearity present at a given level has no 

impact on the diagnosis or consequences of collinearity in the other level. 

Past researchers (e.g., Yu et al., 2015) have recommended calculating an “overall” 𝜅 for 

multilevel data, using all level-1 and level-2 predictors. We argue that this “overall” 𝜅 lacks 

utility. Recall that 𝜅 is derived from 𝜆  and 𝜆 . Consider the scenario where the predictor 

set consists entirely of level-1 predictors that have been disaggregated into their level-specific 

parts. Because 𝜅 is applied to standardized variables, the sum of eigenvalues for the level-1 and 

level-2 predictor sets will be equal. As more collinearity is present at a given level, 𝜆  and 

𝜆  are driven upward and downward, respectively, such that the sum remains the same. 

Therefore, the level containing greater collinearity will yield both the largest and smallest 

eigenvalues. The “overall” 𝜅 will be entirely driven by whichever level has the stronger 

collinearity. Alternatively, there may be an unequal number of predictors at each level, so the 

sum of the eigenvalues at each level is not equal. In this case, 𝜆  and 𝜆  could come from 

different levels, creating an even more meaningless 𝜅. In summary, an overall 𝜅 diagnostic will 
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at best be insufficient for identifying level-specific collinearity, and will at worst be misleading, 

suggesting that separate level-specific 𝜅s will be much more useful. 

Demonstration on Simulated Examples 

The above conclusions can be demonstrated with simple simulated examples. We generated 

multilevel data sets with three level-1 predictors, 𝑥 , 𝑥 , and 𝑥 , which had various level-

specific correlation structures. In all conditions, 𝑥  was minimally correlated with the other 

predictors. Correlations between the first two predictors were the focus of the manipulation, 

which we will refer to as 𝑟 , 𝑟 , and 𝑟  in this section. The data generating model for Condition 

1 was 𝑟  = 𝑟  = 0 and ICC ICC ICC .25. Condition 1 was created as a baseline 

case with no collinearity and typical ICCs.  In Condition 2, 𝑟  = .7, 𝑟  = –.9, and ICC

ICC ICC .25. Condition 2 was chosen to demonstrate the consequences of conflation 

in situations where level-specific correlations are highly dissimilar. In Condition 3, 𝑟  = .25, 𝑟  

= .95, and ICC was manipulated such that ICC  = .8, ICC  = .01, and ICC  = .25. 

Condition 3 was chosen because these data characteristics give rise to a conflated correlation that 

is smaller than both the within- and between-cluster correlations. (For details about the data 

conditions that give rise to 𝑟 𝑟  and 𝑟 𝑟 , see Online Appendix A.) 

Having generated each data set, we computed correlations, VIFs, and 𝜅s using both the 

conflated and disaggregated predictor set. When calculating 𝜅, we computed an “overall” 

measure for all predictors, and then separately for the level-1 set and the level-2 set. See Table 1. 

From the correlation matrices of our simulated data, we see that disaggregating the predictors 

introduces orthogonality across the level-specific components; all level-1 components have zero 

correlation with all level-2 components. Additionally, uncentered predictors yield correlations 
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that are unequal to any level-specific correlations; in conditions 1 and 2, 𝑟  is equal to neither 𝑟  

nor 𝑟  and falls between them, and in condition 3, 𝑟  is notably smaller than both 𝑟  and 𝑟 . 

The necessity of disaggregation also becomes clear in the collinearity diagnostics. For 

example, in condition 2, each level-specific correlation is strong, but 𝑟  falls between them and is 

closer to zero than both. VIFs associated with uncentered predictors falsely suggest little-to-no 

collinearity. In contrast, for the disaggregated predictors, VIFs correctly identify strong level-

specific collineary. The same problem occurs in condition 3 even though 𝑟  and 𝑟  are not of 

opposite sign. Due to dissimilar ICCs of the predictors, 𝐑𝐓 yields misleadingly small VIFs, even 

though predictor collinearity is strong at both levels, particularly at level 2. 

The consequences of conflation are the same for 𝜅s as they are for VIFs. Additionally, for 

disaggregated predictors, the overall 𝜅 (computed for the entire predictor set) is always equal to 

the level-specific 𝜅 from the level with stronger collinearity. For example, in condition 3, overall 

𝜅 is equal to 𝜅 obtained from only the level-2 variables. From the overall measure it is 

impossible to ascertain whether collinearity is problematic at level 1, level 2, or both. Computing 

separate level-specific 𝜅s is much more useful for identifying meaningful collinearity problems. 

Summary 

In this section, we have analytically demonstrated that level-specific covariance (i.e., 

collinearity) is a factor that determines point estimates for conflated slopes. This is in direct 

contrast to single-level regression where collinearity never biases point estimation. The 𝛽  

derivation indicates how other data characteristics, particularly ICC  and cluster size, will 

interact with collinearity at each level to either exacerbate or mitigate its effects. We have also 

demonstrated that diagnostics applied to uncentered predictors are misleading, whereas level-

specific diagnostics allow for trustworthy examination of collinearity at each level. 
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Simulation Study 

We used simulation to further demonstrate our conclusions and to probe additional questions 

that could not be answered with analytics. Two key goals of the current study are to demonstrate 

how collinearity’s consequences change across different centering specifications, and to clarify 

how other design factors interact with centering choice to reduce or worsen the consequences of 

collinearity. Here, we expand on the previous section to further address these goals. 

Study Design 

We generated multilevel data sets that contained three continuous level-1 predictors, 𝑥 , 

𝑥 , and 𝑥 , which followed a multivariate normal distribution, as well as a continuous 

normally-distributed level-1 outcome, 𝑦 . In all cases, the within-cluster slope of each predictor 

was 1, and the between-cluster slope of each predictor was –.8. The standardized within-cluster 

effect ranged from .07 to .11, and the standardized between-cluster effect ranged from –.01 to –

.11; standardized effects changed slightly across conditions because the within- and between-

cluster variances of the predictors changed as predictor ICCs changed. Additionally, the 

proportion of total variance in 𝑦  explained by fixed and random effects at both levels (denoted 

𝑅  by Rights & Sterba, 2019) ranged from .068 to .378. Explained outcome variance 

differed across simulation conditions because we opted to instead hold the total variance of 𝑦  

constant (see the Avoiding Confounders section below). 

In past studies concerning collinearity, it has been consistently found that, all else being 

equal, the consequences of collinearity are mitigated as sample size increases. Given the highly 

consistent nature of these findings, we held sample size constant. In all conditions, number of 

clusters (J) was 50, and the size of each cluster (𝑛 ) was randomly sampled from a uniform 

distribution ranging from 25 to 50. The third predictor (𝑥 ) was included for comparison, and 
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nothing involving this predictor was manipulated. Data were generated in R, and all models were 

fit using the lme4 package (Bates et al., 2015). Code for data generation is available in the Online 

Code Supplement. Before the main simulation study was run, small calibration studies were 

conducted to determine the most relevant range of each design factor. 

Predictor collinearity was defined as the level-specific pairwise correlations of 𝑥  and 𝑥 . 

Their within-cluster correlation, 𝑟 , and between-cluster correlation, 𝑟 , were varied across the 

following levels: –.9, –.8, –.7, –.6, 0, .6, .7, .8, and .9. Zero correlations were included to 

establish a “baseline” condition of no collinearity. Calibration studies showed that .6 was the 

correlation level at which effects of collinearity became pronounced. From there, we increased 

correlation by an increment of .10 to maintain granularity. We included both positive and 

negative correlations due to past work by Mela and Kopalle (2002) which suggests there may be 

asymmetric effects of collinearity depending on the direction of association. Negative 

correlations have never been included in past studies concerning collinearity in multilevel data, 

so whether this asymmetry may carry over to multilevel settings is unknown. Finally, in all 

conditions, 𝑐𝑜𝑟 𝑥 , 𝑥  and 𝑐𝑜𝑟 𝑥 , 𝑥  were held constant at .1 at both levels. 

ICC  was varied across .05 and .3. These represent small and large values that are regularly 

observed in empirical data. The goal of varying ICC  was to support our conclusions from the 

𝛽  derivation and provide further clarity given mixed findings in past work. We expected the 

effects of within-cluster collinearity would be exacerbated by smaller ICC  and the effects of 

between-cluster collinearity would be exacerbated by larger ICC . 

ICC  and ICC  were also varied across .05 and .3. Given the importance of ICC  and 

ICC  in Eq. 8, we expected that each would play an interactive role with collinearity to affect 

conflated point estimates and other aspects of estimation. Predictor ICC has never been varied in 
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past multilevel simulation studies concerning collinearity, so this was another novel aspect of the 

current study. In all conditions, ICC  was held constant at .25. 

Finally, we varied correlations among the random effects. The correlation of the random 

intercept and the random slope of 𝑥  was varied across .1 and .7. Additionally, the correlation 

of the random slopes of 𝑥  and 𝑥  was varied across .1 and .7. In the extant literature 

concerning collinearity in multilevel models, there is speculation that greater redundancy among 

the random effects, either independently or interactively with collinearity among observed 

predictors, may also have consequences for bias and precision (Stinnett, 1994; Zhang & Chen, 

2013). No prior studies have manipulated correlations among random effects, so we probed its 

influence here. Pairwise correlations among all other random effects were held constant at .05. 

We implemented a fully crossed design. With 9 levels of 𝑟 , 9 levels of 𝑟 , 2 levels of ICC , 

2 levels of ICC , 2 levels of ICC , 2 levels of correlation across random intercept and slope, 

and 2 levels of correlation across random slopes, we implemented (9  9  2  2  2  2  2) = 

2,592 conditions. For a summary of the simulation conditions, see Table 2. Each condition was 

repeated until we obtained 1,000 replications in which no convergence warnings or other 

warnings were produced during model fitting. If a warning was produced, the design conditions 

and content of the warning were saved but all other output from that replication was discarded. 

Models Fit 

On each replication, after the multilevel data set was generated, three models were fit to it. 

The fully conflated model included uncentered 𝑥 , 𝑥 , and 𝑥  as predictors with random 

slopes (Eq. 18). The fully disaggregated model included cluster mean centered 𝑥 , 𝑥 , and 

𝑥  as level-1 predictors with random slopes, and their cluster means were included as level-2 

predictors (Eq. 19). In the partially disaggregated model, 𝑥  was uncentered whereas 𝑥  and 
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𝑥  were disaggregated (Eq. 20). Each model was fit first with REML estimation, then with full 

information maximum likelihood (FIML) estimation2; these estimation methods are known to 

yield different random effect (co)variance estimates, so we sought to ascertain whether the 

effects of predictor collinearity on random effect (co)variance estimates may differ for REML vs. 

FIML estimation. In all cases, the optimizer was bound optimization by quadratic approximation. 

Fully conflated model: 

 
* * * *
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                                                                                   (18) 

Fully disaggregated model: 
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               (19) 

Partially disaggregated model: 
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                                        (20) 

In Eqs. 18-20, * is a conflated fixed effect whereas   is a level-specific fixed effect. The u 

terms are random intercepts ( 0 ju ) and random slopes ( 1 ju , 2 ju , 3 ju ) for cluster j, whereas ije  is 

the level-1 residual for observation i in cluster j. Using the first predictor as an example, 1ijx  is 

the uncentered predictor for observation i in cluster j, 1 1.ij jx x  is the cluster mean centered 

predictor, and 1. jx  is the cluster mean. 

Outcome Measures 

 
2 Throughout this paper, full information maximum likelihood (FIML) estimation is synonymous with maximum 
likelihood estimation (MLE), as the two are equivalent in this case. 
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On each replication, for each of the three models, we recorded all fixed effect estimates 

(intercept and slopes), their estimated SEs, the estimated covariance matrix of random effects 

(the 𝚻 matrix), and the estimated level-1 residual variance (𝜎 ). 

We used ANOVAs to pinpoint which design factors exacerbated or mitigated the 

consequences of collinearity in each model. For each outcome of interest, we ran a set of two-

way ANOVAs that contained every pairwise crossing between 𝑟  and the other design factors, 

and between 𝑟  and the other design factors. The pairs of design factors whose ANOVAs yielded 

the largest effect sizes were then plotted. For each of the three models, outcomes of interest were 

(1) the fixed effect estimates (which were plotted alongside the level-1 and level-2 data-

generating slopes); (2) relative bias in the fixed effect SEs, compared to their empirical standard 

deviations across iterations within each simulation condition; and (3) relative bias in the random 

effect estimates, compared to the data-generating parameters in each simulation condition. 

Avoiding Confounders 

In past simulation studies concerning collinearity in multilevel data, the total variance of 𝑦  

was not held constant across conditions. When predictor collinearity changes, the explained 

variance of 𝑦  also changes. If this is not offset, then incidentally, the entire variance of 𝑦  

changes. Nonconstant 𝑣𝑎𝑟 𝑦  has likely been an important confounder in past studies. 

In multilevel data, the total variance of 𝑦  can be decomposed into five sources (Rights & 

Sterba, 2019). (1) f1 is the level-1 variance of 𝑦  that is explained by level-1 predictors via fixed 

slopes; (2) v is the level-1 variance of 𝑦  that is explained by level-1 predictors via random slope 

(co)variation; (3) 𝜎  is level-1 residual variance of 𝑦 ; (4) f2 is level-2 variance of 𝑦  that is 

explained by the fixed slopes of level-2 predictors; (5) 𝜏  is level-2 residual variance of 𝑦  that 

is attributable to random intercept variation. Both f1 and f2 are influenced by the strength of the 
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fixed slopes and the strength of relations among the predictors, at the relevant level. Therefore, 

changing within-cluster collinearity changes f1, whereas changing between-cluster collinearity 

changes f2. Similarly, changing covariation among the random slopes changes v. We held the 

level-1 variance of 𝑦  constant by adjusting 𝜎  as needed, commensurate with the changes in f1 

and v across simulation conditions. We held the level-2 variance of 𝑦  constant by adjusting 𝜏  

as needed according to changes in f2. As a result, total 𝑣𝑎𝑟 𝑦  was held constant across all 

conditions.  

It is likely that spurious results were identified in past work due to nonconstant 𝑣𝑎𝑟 𝑦  

across conditions. However, in this study, we introduced a different confounder in that the 

proportion of explained variance of 𝑦  was different across conditions. To thoroughly examine 

the impact of this confounder, we ran the simulation study a second time, wherein the explained 

variance of 𝑦  was held constant at each level and the total variance of 𝑦  was allowed to vary 

across conditions. We briefly summarize these findings in the Discussion section, and all results 

from this supplementary study can be found in Online Appendix B. Throughout this paper, we 

focus on results from the original study wherein the total variance of 𝑦  was held constant.  

Results 

Fully Conflated Model 

Fixed effect estimates were affected by predictor collinearity, along with other design factors. 

Two-way factorial ANOVAs indicated the following crossings yielded the largest effect sizes: 

𝑟 𝑟 , 𝑟  ICC , 𝑟 ICC , 𝑟 ICC , 𝑟 ICC , 𝑟 ICC , and 𝑟 ICC . 

Observed patterns supported our conclusions from Eq. 13; however, contrary to expectation, 

smaller ICC  exacerbated the effects of both within- and between-cluster collinearity, though its 

impact was not as pronounced at level 2. In some conditions where predictor ICCs were 
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dissimilar, conflated slope estimates did not fall between the two level-specific data-generating 

slopes; see Figure 1. 

REML and FIML yielded identical fixed effect estimates, which matched those computed 

with the 𝛽  formula in all conditions. Given the problematic nature of these fixed effects 

estimates, which has been demonstrated here and elsewhere (Cronbach & Webb, 1975; Curran & 

Bauer, 2010; Kenny & La Voie, 1985), we did not probe fixed effect SEs or random effect 

(co)variance estimates. Because most findings are redundant with our conclusions from the 𝛽  

derivation, we did not include all figures here; see Online Appendix A, Figures A3-A6. 

Partially Disaggregated Model 

We began by examining whether collinearity, together with other design factors, impacted 

fixed effect estimates. Because 𝑥  was uncentered and 𝑥  was disaggregated, we analyzed 

conflated slope estimates for 𝑥  and level-specific slope estimates for 𝑥 . Conflated slope 

estimates for 𝑥  were unaffected by predictor collinearity; however, the within- and between-

cluster slope estimates for 𝑥  were affected by predictor collinearity, as well as by other design 

factors. For the within-cluster slope, ANOVAs indicated that 𝑟 ICC , 𝑟 ICC , and 

𝑟 ICC  should be plotted. For the between-cluster slope of 𝑥 , we plotted 𝑟 ICC  and 

𝑟 ICC . 

For the within-cluster slope of 𝑥 , when ICC  was small, strong within-cluster collinearity 

was associated with biased estimates of the within-cluster effect (Figure 2). The direction of this 

bias corresponded with the direction of 𝑟 . This pattern also emerged when predictor ICCs were 

large (Figure 3). The true within-cluster effect was 1.0, and mean estimates ranged from .841 
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(when 𝑟  = –.90, ICC  = .30, and ICC  = .30) to 1.127 (when 𝑟  =  .90, ICC  = .30, and 

ICC  = .30), which correspond to –15.9% and +12.7% relative bias, respectively. 

For the between-cluster slope of 𝑥 , between-cluster collinearity was associated with biased 

estimates in all conditions. Large ICC  and a small ICC  drastically exacerbated this bias 

(Figure 4). The true between-cluster effect was –.8, and mean estimates ranged from –10.25 

(when 𝑟  = .9, ICC  = .3, and ICC  = .05) to 8.91 (when 𝑟  = –.9, ICC  = .3, ICC  = 

.05), which amount to 1,181%  and –1,214% relative bias, respectively. 

REML and FIML estimates were identical, so Figures 2-4 collapse across results from both 

estimation methods. We did not examine SEs or random effects estimates from this model given 

the problematic nature of the fixed effect estimates. 

Fully Disaggregated Model 

Unlike in the conflated and partially disaggregated models, fixed effect estimates in the fully 

disaggregated model were unaffected by predictor collinearity and were unbiased in all 

conditions. Therefore, we ran two-way ANOVAs to assess whether predictor collinearity, 

together with other design factors, impacted relative bias in the SEs of the fixed effect estimates. 

The benchmark used to compute relative bias was the empirical standard deviation of the 

estimates across the 1,000 iterations of each simulation condition. 

Standard Errors. There was a main effect of 𝑟  on relative bias in the SEs of the estimated 

within-cluster effects of 𝑥  and 𝑥 . When 𝑟  was further from zero in either direction, relative 

bias increased. When 𝑟  was –.90, average relative bias (collapsing across all other design 

factors) was 4.5% for 𝑥  and 4.4% for 𝑥 . When 𝑟  was .90, average relative bias was 4.3% 

for 𝑥  and 4.6% for 𝑥 . Focusing on the within-cluster effect of 𝑥  (as results for 𝑥  and 

𝑥  were identical), Figure 5 shows empirical standard deviations of the fixed effect estimates 



  32

and average SEs for each value of 𝑟 . Within-cluster collinearity led to a true increase in the 

sampling variability of level-1 fixed effect estimates (standard deviation increased). However, 

when 𝑟  was further from zero, that true increase was accompanied by increased relative bias in 

the SEs; in Figure 5, this is indicated by the two lines (one depicting empirical standard deviation 

and one depicting average estimated SE) drifting futher apart as 𝑟  becomes stronger. REML 

and FIML estimation yielded identical results, so Figure 5 collapses across both. 

For relative bias in the SEs of estimated between-cluster effects, ANOVAs indicated no main 

or interactive effects of any design factors. To probe this finding, we plotted empirical standard 

deviations alongside estimated SEs as a function of 𝑟  (Figure 6). Results for REML and FIML 

differed, so each is shown separately in Figure 6. Between-cluster collinearity resulted in a true 

increase in the sampling variability of level-2 fixed effect estimates (standard deviation 

increased). However, increasing 𝑟  was not associated with increased relative bias in the 

estimated SEs. Across all levels of 𝑟 , SEs showed a downward relative bias of about –7% for 

REML and –10% for FIML estimation. In Figure 6, the stability of this relative bias is indicated 

by the lines remaining about the same distance apart across all levels of 𝑟 . 

Random Effect (Co)variances. We examined relative bias in the random effect (co)variance 

estimates as a function of predictor collinearity and other design factors. REML and FIML 

estimation yielded different results for each, so they are plotted separately in subsequent figures. 

Beginning with the random intercept variance (𝜏 ), downward relative bias arose in many 

conditions, and there was a symmetric effect of 𝑟 . When ICC  was small, relative bias was 

greater. Across all conditions, downward relative bias was much greater for FIML estimates. 

When ICC  was small, relative bias ranged from .7% to 3.2% for REML, and 12.6% to 14.5% 
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for FIML estimation. When ICC  was large, REML estimates were unbiased, but relative bias 

ranged from 7.7% to 7.9% for FIML. See Figure A7 in Online Appendix A. 

For bias in the random slope variance estimates for collinear predictors (𝜏  and 𝜏 ), 

ANOVAs indicated that 𝑟  should be plotted with the ICC of the corresponding predictor (𝑥  

for 𝜏  and 𝑥  for 𝜏 ). See Figure 7. When 𝑟  was further from zero in either direction, there 

was greater upward relative bias. Large predictor ICC exacerbated this bias. REML resulted in 

greater bias than FIML, and this difference became more pronounced as 𝑟  was further from 

zero. For both estimation methods and both variances, the greatest relative bias was observed 

when 𝑟  was –.90 and the relevant predictor ICC was large (.30). With REML, relative bias 

reached a maximum of 352% for 𝜏  and 342% for 𝜏 . With FIML, relative bias in 𝜏  reached 

a maximum of 317% and 307% for 𝜏 . 

Random slope variance estimates for the non-collinear predictor (𝜏 ) showed upward 

relative bias in most conditions. There was an asymmetric effect of 𝑟  such that negative 𝑟  led 

to greater bias than positive 𝑟 . When ICC  was small, bias was exacerbated. In all conditions, 

REML estimates were more biased. Relative bias was greatest when 𝑟  was –.90 and ICC  was 

.05, and reached 41.9% for REML and 31.6% for FIML. See Figure A8 in Online Appendix A. 

Random slope covariance estimates for the collinear predictors (𝜏 ) were upwardly biased 

when  𝑟  was negative, and downwardly biased when 𝑟  was positive. Bias was exacerbated by 

small ICC  and large ICC of either predictor. There was also an interaction with the correlation 

of the random slopes of 𝑥  and 𝑥 ; when this correlation was smaller, bias was exacerbated. 

REML and FIML estimates were similar when collinearity was low-to-moderate, but at the 

strongest levels of collinearity, REML yielded greater relative bias than FIML. In the conditions 

that yielded the greatest relative bias (small ICC , large predictor ICCs, and small random slope 
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correlation), 𝑟  = –.90 was associated with relative biases of 3,986% for REML and 3,651% for 

FIML, whereas 𝑟  = .90 was associated with relative biases of –3,132% for REML and –2,985% 

for FIML. See Figures A9-A11 in Online Appendix A. 

We also probed bias in estimated random slope covariances where one predictor was 

involved in the collinearity and the other was not (𝜏  and 𝜏 , ), as well as covariances among 

the random intercept and random slopes (𝜏 , 𝜏 , 𝜏 ). In general, relative bias was larger when 

𝑟  was further from zero, ICC  was small, and predictor ICCs were large. See Figures A12-A15. 

Nonconvergence. Findings were extremely similar for REML and FIML, so the following 

results collapse across the two estimation methods. In total, .4% of iterations yielded a 

nonconvergence warning. Strong within-cluster collinearity was associated with greater 

incidence of nonconvergence; however, nonconvergence remained stable across all levels of 

between-cluster collinearity (Online Appendix A, Figure A16). Larger ICC  was associated with 

more nonconvergence warnings; 40.11% of warnings arose when ICC  was .05, whereas 59.9% 

of warnings arose when ICC  was .30. Nonconvergence rate did not differ across levels of 

predictor ICC or covariation the random effects. For more detail about rates of nonconvergence 

across simulation conditions, see Online Appendix A Figures A17-A19. 

Discussion 

The purpose of this study was to integrate the topics of centering and collinearity in 

multilevel models. To this end, we reconciled the broad literatures on each of these topics, 

reviewed level-specific and conflated correlation and covariance, and formalized relationships 

between predictor collinearity and multilevel model parameter estimates. We demonstrated that 

predictor collinearity, both within and between clusters, deterministically impacts point estimates 

in the fully conflated multilevel model and in the partially disaggregated multilevel model. These 
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results are a key departure from single-level regression, where collinearity affects estimates’ 

precision, not bias. In multilevel models, in the presence of contextual effects (i.e., when the 

within- and between-cluster effect of a predictor are not equal) we have proven that point 

estimates themselves can be biased by predictor collinearity if full disaggregation is not 

conducted.  

Of note, our analytic conclusions are generalizable to both continuous and categorical 

predictors. Use of a multicategorical predictor necessitates the inclusion of multiple coding 

variables (e.g., dummy, contrast, or effect codes). Coding variables will necessarily be 

correlated, and their level-specific correlations may differ greatly depending on group 

proportions within and across clusters. The current work suggests that slope estimates associated 

with coding variables may easily become biased if full disaggregation is not conducted, 

reiterating its importance in the presence of categorical predictors.  

With respect to the fully conflated model, our conclusions from the maximally general 𝛽  

derivation were mostly supported by the simulation study. Conflated slope estimates varied as a 

function of predictor collinearity at each level. As expected, smaller ICC  exacerbated the effect 

of within-cluster collinearity on the point estimates. Contrary to expectation, smaller ICC  also 

exacerbated the effect of between-cluster collinearity; this finding is likely attributable to the 

more complex weight, which is not directly informed by ICC , associated with between-cluster 

collinearity in the 𝛽  formula. 

Predictor ICCs interacted with collinearity in interesting ways to “push around” conflated 

slope estimates. When within-cluster collinearity was strong and predictor ICCs were dissimilar, 

conflated slope estimates did not lie between the two level-specific slopes. Notably, this finding 

coincides with Eq. 8, which shows that dissimilar predictor ICCs is a necessary data condition 
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for a conflated correlation (𝑟 ) that does not lie between 𝑟  and 𝑟  (also see Online Appendix 

A). Overall, dissimilar predictor ICCs can yield both conflated slopes and 𝑟 s that do not lie 

between the two level-specific quantities by which they are informed. Therefore, dissimilar 

predictor ICCs are associated with particularly misleading results when predictors are not 

disaggregated. Past work has not identified data conditions wherein it is possible to obtain a 

conflated slope estimate that does not lie between the two level-specific slopes. In fact, it was 

understood that a conflated slope would always lie between the two, according to Raudenbush 

and Willms’ (1995) expression of the conflated slope as a weighted average of within- and 

between-cluster effects. It appears that this pattern need not hold in the context of multiple 

predictors that are collinear. 

To wrap up our discussion of the fully conflated model, we acknowledge that in some 

situations, researchers may conclude that the conflated model is appropriate if the within- and 

between-cluster effects of a predictor are found to be (nearly) equal. However, even in these 

cases, the conflated slope estimate is still systematically “pushed around” by a variety of data 

characteristics, and is still uninterpretable. Slopes are interpreted in terms of what happens in 

response to a “one-unit change” in a predictor, and if “one-unit change” means something 

different within and across clusters (it must), then equal slopes are only incidentally equal, and 

their equality is substantively meaningless. 

Findings concerning the partially disaggregated model were also novel. Such a model has 

never been investigated in studies concerning multilevel collinearity, so these results are 

important to unpack. When two predictors are collinear, and one is uncentered whereas the other 

is disaggregated, fixed effect estimates with respect to the disaggregated predictor will be biased 

– sometimes drastically so – as a result of collinearity. This finding has key practical 
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implications. Many applied users of MLM understand the importance of disaggregation for the 

interpretability of estimates; however, predictors whose effects are not of key substantative 

interest, such as covariates, are frequently left uncentered. Here we show that when predictors 

are collinear and some are left uncentered whereas other, likely the most substantively important, 

predictors are disaggregated, that disaggregation will not yield unbiased estimates. If predictors 

are collinear to even a moderate degree (e.g., r = .6), then slope estimates associated with the 

disaggregated predictor will be untrustworthy. It is therefore of utmost importance to 

disaggregate all predictors in the model, even those that are not substantively important. 

In the fully disaggregated model, slope estimates were unaffected by collinearity. 

Collinearity’s consequences for this model most closely mimic those observed in single-level 

regression, such that fixed effect point estimates were unaffected but their SEs were enlarged. 

However, enlarged SEs were accompanied by upward bias. This is an important departure from 

single-level regression, where large SEs are not the result of upward bias, but are an accurate 

reflection of the increased sampling variability of each point estimate. In the fully disaggregated 

multilevel model, collinearity led to both true increases in the sampling variability of the point 

estimates and upward bias in the SEs at level 1. This suggests that for SEs, the consequences of 

collinearity are more severe in multilevel models than in single-level models. This finding also 

clarifies confusion from past multilevel studies, as some reported upwardly biased SEs whereas 

others did not. The upward bias observed here could be classified as negligible according to 

some criteria (e.g., <5%); perhaps some studies observed similar patterns but reported a lack of 

bias due to its small magnitude. Additionally, prior work is often unclear as to which centering 

specification was under study. Relative bias in the SEs varied as a function of collinearity for 
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within-cluster estimates, but not for between-cluster estimates, so it is possible that this result 

was muddied in past work that did not conduct disaggregation. 

This study provides compelling evidence regarding the consequences of predictor collinearity 

for random effect (co)variance estimates, which were previously poorly understood due to scarce 

research. Within-cluster collinearity led to bias in nearly every random effect (co)variance 

estimate, whereas between-cluster collinearity did not affect bias. Small ICC  and large predictor 

ICCs exacerbated bias. Across negative vs. positive predictor correlations, bias tended to be 

symmetric for variances but asymmetric for covariances. Collinearity caused the greatest relative 

bias in the random slope (co)variance estimates corresponding to the collinear predictors. 

Relative bias tended to increase exponentially across the collinearity levels that we tested, 

suggesting that at low-to-moderate predictor collinearity, negligible bias could be maintained.  

Our results concerning (co)variance estimates differ notably from past findings, which are 

sparse. Shieh and Fouladi (2003) reported small-to-moderate downward bias in all random effect 

(co)variances except random intercept variance, whereas Yu et al. (2015) reported no bias in any 

data conditions. We observed upward bias in all random slope variance estimates, and both 

upward and downward bias in all covariance estimates, which was sometimes extreme. Our 

divergent findings may be attributable to important, yet previously unaddressed, differences in 

data generation procedures and model specification. Past studies were often unclear about the 

centering method used, and the total variance of 𝑦  was not held constant. Therefore, it is 

unclear whether the same random effects are being compared; random effects in the conflated 

model suffer from similar problems as the fixed effects (Rights, 2022), so examination of their 

bias may be misleading. It is also likely that nonconstant variance of 𝑦  across conditions 

confounded prior findings. In future work, transparency regarding data-generation processes and 
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model specification details will be very important for facilitating replicable results and an 

accumulation of evidence regarding collinearity’s consequences for multilevel models. 

In the fully disaggregated model, differences emerged between REML and FIML estimation 

with respect to SEs and random effect (co)variance estimates. SEs of the level-2 fixed effect 

estimates were less biased under REML; this finding was expected (Raudenbush & Bryk, 2002) 

and was consistent across all collinearity conditions. Random effect (co)variance estimates also 

differed, especially at the most extreme levels of collinearity. In these conditions, REML tended 

to yield slightly greater bias than FIML, including for all random slope (co)variances. This was 

surprising given that REML typically yields less biased variance estimates than FIML, whose 

estimates tend to be downwardly biased. (We observed this pattern only for �̂� .) Differences 

between REML and FIML were slight for most (co)variance estimates when collinearity was 

small-to-moderate. However, it was unexpected that REML was often more sensitive to severe 

predictor collinearity. Future work should explore whether this pattern holds for smaller samples. 

Overall, because neither estimation method was consistently superior over the other, collinearity 

conditions in the data – together with researcher priorities regarding which estimates are most 

important to obtain with the least bias – should inform the choice between REML and FIML.  

There was an asymmetric effect of predictor collinearity on many outcomes. In past studies 

of collinearity in multilevel models, only positive predictor correlations have been included, so 

these findings are novel. In all models, it appeared that many outcomes were more strongly 

impacted by negative 𝑟  than by positive 𝑟 . Interestingly, this pattern was not observed as 

consistently in the second simulation study, when explained 𝑣𝑎𝑟 𝑦  was held constant rather 

than total 𝑣𝑎𝑟 𝑦 . See Online Appendix B. In the original simulation study, explained 

𝑣𝑎𝑟 𝑦  varied across conditions, which likely contributed to asymmetric findings. In our 
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simulated data sets, 𝑥  and 𝑥  each exerted a positive effect on 𝑦  at level 1. Therefore, as 𝑟  

became more positive, more 𝑣𝑎𝑟 𝑦  was explained at level 1, and as 𝑟  became more negative, 

less 𝑣𝑎𝑟 𝑦  was explained at level 1. (Had 𝑥  and 𝑥  each exerted a negative effect on 𝑦 , 

this pattern would have reversed.) It is known that the harmful effects of collinearity tend to be 

exacerbated when the explained variance of the outcome is smaller (e.g., Hayo, 2018; O’Brien, 

2007). Thus, it makes sense that negative 𝑟  tended to have a “stronger” effect on many 

outcomes, because less 𝑣𝑎𝑟 𝑦  was explained in these conditions. In summary, the effects of 

negative vs. positive predictor correlation will differ according to the direction of their relations 

with the outcome, and there is not sufficient evidence to suggest that negative vs. positive 

predictor correlation will universally have greater or lesser effects on estimation.    

Another key goal of this study was to demonstrate the benefits of disaggregation for the 

diagnosis of collinearity in multilevel data. The utility of level-specific collinearity diagnostics 

was demonstrated in many ways. First, diagnostics at each level are independent of each other, 

allowing for trustworthy examination of collinearity at each level in isolation. Second, conflated 

collinearity diagnostics are misleading and arbitrary, highlighting their lack of utility. Third, 

level-specific collinearity diagnostics identify the collinearity that informs parameter estimates; 

level-specific collinearity impacts bias and precision in all models, so examining collinearity 

among conflated predictors is not useful for understanding how estimation has been impacted. 

Both mathematically and conceptually, level-specific diagnostics possess major advantages and 

are necessary for accurate diagnosis of collinearity in multilevel data. 

The benefits of disaggregation follow from the fact that it yields two sets of level-specific 

predictors that are mutually independent. Collinearity can arise across levels if a level-1 predictor 

is left uncentered, as the uncentered level-1 predictor may be correlated with its level-2 cluster 
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mean or with other level-2 predictors; however, this collinearity can be eliminated by 

disaggregation. This property exactly mimics non-essential collinearity in single-level 

regression, where non-essential collinearity is due solely to the scaling of variables and can be 

removed through centering (Cohen et al., 2003; Dalal & Zicker, 2012). Thus, cross-level 

collinearity should be considered non-essential in multilevel settings. 

Limitations of the study and opportunities for future work are important to address. First, to 

keep the number of simulation conditions manageable, we did not vary all relevant design 

factors. Sample size at each level was held constant, and our simulated data sets had many 

clusters and large cluster sizes, so we likely obtained conservative estimates of the harmful 

effects of collinearity. Additionally, the differences between FIML and REML may have been 

more pronounced had sample sizes been smaller. In the future, it may be useful to replicate our 

findings on smaller samples and explore how the consequences of collinearity, and interactions 

with other design factors and estimation methods, may be more pronounced. We also held slopes 

constant at each level. Strength of the relations between predictors and the outcome influences 

the consequences of collinearity, such that stronger relations (i.e., a higher model 𝑅 ) mitigate 

collinearity problems (Hayo, 2018; O’Brien, 2007). This finding likely carries over to multilevel 

settings (Clark, 2013), but there has not been an accumulation of evidence. Second, we included 

diagnostics primarily for demonstrative purposes (i.e., to show they are misleading when applied 

to uncentered predictors). Deeper study of diagnostics’ behavior on multilevel data, and how 

they may be adapted to the unique challenges that arise in multilevel models is an important 

topic for future study. For example, in what is often termed the “contextual effects” multilevel 

model, level-1 predictors are uncentered and their cluster means are included as level-2 

predictors; this model yields within-cluster effects at level 1 alongside “contextual effects” at 
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level 2, yet the level-1 and level-2 predictors are not orthogonal. It remains unclear, but will be 

useful to explore, how collinearity diagnostics should be adapted to such a situation. Third, 

future work may explore how to mitigate collinearity when higher-order terms are included in 

multilevel models. Cluster mean centered predictors that are raised to a power, or involved in 

interactions, incidentally contain some level-2 variance (Rights & Sterba, 2021) and further steps 

may need to be taken to ensure collinearity problems do not arise.  

Finally, although our focus was the identification of collinearity in multilevel data and 

understanding its implications for multilevel models, it is also important to discuss approaches 

for remediating collinearity problems once they have been identified. Many recommendations 

have been posed in single-level regression; for example, a set of predictors may be replaced with 

a smaller set of principal component scores, predictors that exhibit pairwise correlations greater 

than some threshold may be removed, or factor analysis may be undertaken (e.g., Beckstead, 

2012; Dormann et al., 2013). However, many of these remedies become exceedingly more 

complicated in multilevel contexts, and very little research has probed their performance in 

multilevel settings. Existing recommendations are to collect more data, redefine the research 

problem, or respecify the model (Yu et al., 2015), which in most applications would not be 

feasible or would compromise the theoretical justification of the model. Removing the most 

egregiously collinear predictor(s) may be the simplest approach in multilevel settings, and while 

this is often not ideal, disaggregation lends some important benefits if this approach must be 

taken. If a predictor has been disaggregated, we can identify whether it is problematically 

collinear at one or both levels. Because level-specific components of predictors are mutually 

independent, they both need not be included in the model; we can remove one or the other 
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component without compromising estimates or their interpretability (Raudenbush, 2009). If 

collinearity is problematic, then with disaggregation we can discard less information. 

This study is the first to thoroughly integrate the topics of centering and collinearity in 

multilevel data. By doing so, we developed novel insights into the consequences of collinearity 

in multilevel models across different centering specifications, as well as the importance of 

disaggregation for collinearity diagnosis in multilevel data. Evidence points to the necessity of 

disaggregation as a means to mitigate the consequences of collinearity. However, even if full 

disaggregation is conducted, we identified some data conditions where strong collinearity may 

still be harmful for SEs and random effect (co)variance estimates. In all, we hope to equip 

readers with the tools and knowledge to meaningfully identify collinearity in multilevel data, and 

to keep collinearity problems to a minimum through appropriate model specification. 
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Table 1  
 
Correlation matrices and collinearity diagnostics for uncentered and level-disaggregated predictors across three data-generating 
conditions 
 
Predictor set Correlation matrix VIFs Condition numbers (𝜿𝒔  

Condition 1 (𝑟  = 0, 𝑟  = 0, ICC = ICC = ICC = .25) 

Uncentered 

       𝑥      𝑥     𝑥  
𝑥   1  
𝑥  -.031  1  
𝑥   .036  .030 1 
 

𝑥 : 1.002 
𝑥 : 1.002 
𝑥 : 1.002 

1.053 

Disaggregated 

         𝑥        𝑥        𝑥        𝑥 .         𝑥 .         𝑥 .  
𝑥     1    
𝑥    -.023    1  
𝑥     .041    .021    1  
𝑥 .    0           0           0          1  
𝑥 .    0           0           0         -.095     1  
𝑥 .    0           0           0         -.016     .112     1 

𝑥 : 1.002 
𝑥 : 1.001 
𝑥 : 1.002 
𝑥 . : 1.009 
𝑥 . : 1.022 
𝑥 . : 1.013 

All: 1.158 
Level 1: 1.051 
Level 2: 1.158 
 

Condition 2 (𝑟  = .7, 𝑟  = -.9, ICC = ICC = ICC = .25) 

Uncentered 

       𝑥      𝑥     𝑥  
𝑥   1  
𝑥   .509  1  
𝑥   .066  .060  1 
 

𝑥 : 1.353 
𝑥 : 1.352 
𝑥 : 1.005 

1.763 

Disaggregated          𝑥        𝑥        𝑥        𝑥 .         𝑥 .         𝑥 .  
𝑥     1    

𝑥 : 2.080 
𝑥 : 2.081 

All: 4.687 
Level 1: 2.494 
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𝑥    .720    1  
𝑥     .083    .085    1  
𝑥 .    0           0           0          1  
𝑥 .    0           0           0         -.905     1  
𝑥 .    0           0           0         -.036     -.086    1 

𝑥 : 1.008 
𝑥 . : 5.959 
𝑥 . : 5.995 
𝑥 . : 1.085 

Level 2: 4.687 
 

Condition 3 (𝑟  = .25, 𝑟  = .95, ICC = .8, ICC = .01, ICC = .25) 

Uncentered 

       𝑥      𝑥     𝑥  
𝑥   1  
𝑥   .073  1  
𝑥   .120  .046  1 
 

𝑥 : 1.019 
𝑥 : 1.007 
𝑥 : 1.016 

1.153 

Disaggregated 

         𝑥        𝑥        𝑥        𝑥 .         𝑥 .         𝑥 .  
𝑥     1    
𝑥     .254    1  
𝑥     .074    .048    1  
𝑥 .    0           0           0          1  
𝑥 .    0           0           0          .955     1  
𝑥 .    0           0           0          .309     .316    1 

𝑥 : 1.073 
𝑥 : 1.070 
𝑥 : 1.006 
𝑥 . : 11.328 
𝑥 . : 11.380 
𝑥 . : 1.111 

All: 6.864 
Level 1: 1.311 
Level 2: 6.864 
 

Note. 𝑥  = uncentered predictor. 𝑥  = level-1 component of disaggregated predictor. 𝑥 .  = level-2 component of disaggregated 
predictor. See Online Code Appendix for example R code to compute diagnostics.  
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Table 2  
 
Summary of simulation study conditions 
 
Design Factor Levels 

Within-cluster correlation of 𝑥  and 𝑥  (𝑟 ) –.9, –.8, –.7, –.6, 0, .6, .7, .8, .9 

Between-cluster correlation of 𝑥  and 𝑥  (𝑟 ) –.9, –.8, –.7, –.6, 0, .6, .7, .8, .9 

ICC  .05, .3 

ICC  .05, .3 

ICC  .05, .3 

Correlation of random intercept and random slope of 𝑥  .1, .7 

Correlation of random slopes of 𝑥  and 𝑥  .1, .7 
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Figure 1 
 
Mean estimates of the conflated slope of 𝑥  in the fully conflated model, as a function of 𝑟  and 
predictor ICCs 
 

 
Note. Solid grey lines at 1.00 and –0.80 are the data-generating within-cluster and between-
cluster slope, respectively, of 𝑥 .  
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Figure 2  
 
Mean estimates of the within-cluster slope of 𝑥  in the partially disaggregated model, as a 
function of 𝑟  and 𝐼𝐶𝐶   
 

  

Note. The solid grey line at 1.00 is the data-generating within-cluster slope of 𝑥 .  
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Figure 3  
 
Mean estimates of the within-cluster slope of 𝑥  in the partially disaggregated model, as a 
function of 𝑟  and predictor ICCs 
 

 

Note. The solid grey line at 1.00 is the data-generating within-cluster slope of 𝑥 . 
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Figure 4  
 
Mean estimates of the between-cluster slope of 𝑥  in the partially disaggregated model, as a 
function of 𝑟  and predictor ICCs 
 

 
 

Note. The solid grey line at –0.80 is the data-generating between-cluster slope of 𝑥 . 
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Figure 5  
 
Empirical standard deviations and estimated standard errors of the within-cluster effect of 𝑥  
in the fully disaggregated model 
 

 
 
 
Note. This figure collapses across REML and FIML estimation, as they yielded identical results.  
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Figure 6 
 
Empirical standard deviations and estimated standard errors of the between-cluster effect of 𝑥  
in the fully disaggregated model 
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Figure 7  
 
From the fully disaggregated model, relative bias in the estimates of 𝜏  as a function of 𝑟  and 
𝐼𝐶𝐶  (top panel) and relative bias in the estimates of  𝜏  as a function of 𝑟  and 𝐼𝐶𝐶  

(bottom panel) 
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Appendix A: Demonstrating correspondence between the total correlation coefficient and 
Muthén’s standardized total covariance matrix 
 
Gale (1987) and Snijders and Bosker (2012) present an equation for the total correlation 

coefficient, Tr , from a within-cluster correlation, Wr , and a between-cluster correlation, Br . 

This formula pertains to only one correlation at a time and has not been scaled up to a full 

correlation matrix, TR . 

 

Additionally, Muthén (1990) showed that the total covariance matrix for multilevel data, TΣ , is 

related to the between-level covariance matrix, BΣ , and the within-level covariance matrix, 

WΣ , via a simple sum: T B W Σ Σ Σ . In the sample this is denoted TS = BS + WS . 

 
Our goal is to show how Gale’s derivation scales up to a full correlation matrix, as well as how 
Muthén’s covariance matrices can be standardized into correlation matrices, and that these two 
solutions are equivalent.  
 

One key mathematical finding in Gale (1987) is how any total correlation Tr  can be expressed in 

terms of Br  and Wr :  

1 2 1 2
ICC ICC 1 ICC 1 ICC

ij ij ij ijT x x B x x Wr r r          (A.1) 

 

Additionally, Muthén defines TS , BS , and WS as follows:  

  1
.. ..

1 1

( 1)
NjJ

T ij ij
j i

N x x x x

 

   S        (A.2) 

  1
. .

1 1

( )
NjJ

PW ij j ij j
j i

N J x x x x

 

   S        (A.3) 

  1
. .. . ..

1

( 1)
J

B j j j
j

J N x x x x



   S                    (A.4) 

 
 
Because Muthén uses the matrix formulation, it is more general. We will use Muthén’s 

covariance matrices as a starting point to derive TR . 

 
To transform a generic covariance matrix Σ  to a correlation matrix R , we can pre- and post-
multiply Σ  by 1D , where ( ( ))sqrt diagD Σ . 
 
Therefore, in the sample:  

1 1
T T

 R D S D           (A.5) 
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Substituting:  

 1 1
T B W

  R D S S D          (A.6) 

 
Distributing:  

1 1 1 1
T B W

    R D S D D S D          (A.7) 

 

Now show what the elements of TR  will look like after carrying out this multiplication. Then, 

we can check if those elements match what Gale’s math suggests they should be. 
 

D  is a diagonal matrix containing the square roots of the diagonals of TS . The diagonals of TS  

will be the total variance of each variable. The total variance of each variable is the sum of its 
between-level and within-level variance, e.g.:  
 

1 1 1var( ) var( ) var( )ij ij B ij Wx x x          (A.8) 

 
Therefore, for two predictors, the matrix 1D  takes the form:  

1 11

2 2

1
0

var( ) var( )

1
0

var( ) var( )

ij B ij W

ij B ij W

x x

x x



 
    
 

  

D      (A.9) 

 

From Muthén’s definition, we also know that BS  will take the following form:  

1 1 2

1 2 2

var( ) cov( , )

cov( , ) var( )
ij B ij ij B

B
ij ij B ij B

x x x

x x x

 
  
 

S       (A.10) 

 

And WS  will take the following form:  

1 1 2

1 2 2

var( ) cov( , )

cov( , ) var( )
ij W ij ij W

W
ij ij W ij W

x x x

x x x

 
  
 

S       (A.11) 
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We begin by deriving 1 1
B

 D S D :  

 
 

 

1 1 1 1 21

1 2 2

2 2

1 1 2

1 1 1 1

1

1
0

var( ) var( ) var( ) cov( , )

cov( , ) var( )1
0

var( ) var( )

var( ) cov( , )

var( ) var( ) var( ) var( )

cov( ,

ij B ij W ij B ij ij B

B
ij ij B ij B

ij B ij W

ij B ij ij B

ij B ij W ij B ij W

ij

x x x x x

x x x

x x

x x x

x x x x

x x



 
          

  

 


D S

2 2

2 2 2 2

) var( )

var( ) var( ) var( ) var( )
ij B ij B

ij B ij W ij B ij W

x

x x x x
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Next, we derive 1 1
W

 D S D : 

1 1 2

1 1 1 1 1 11 1

1 2 2

2 22 2 2 2

var( ) cov( , ) 1
0

var( ) var( ) var( ) var( ) var( ) var( )

cov( , ) var( ) 1
0

var( ) var(var( ) var( ) var( ) var( )

ij B ij ij B

ij B ij W ij B ij W ij B ij W

B
ij ij B ij B

ij B iij B ij W ij B ij W

x x x

x x x x x x

x x x

x xx x x x

 

 
      
 

   

D S D

     

  

1 1 2

1 1 1 1 1 1 2 2

1 2 2

1 1 2 2 2

)

var( ) cov( , )

var( ) var( ) var( ) var( ) var( ) var( ) var( ) var( )

cov( , ) var( )

var( ) var( ) var( ) var( ) var(

j W

ij B ij ij B

ij B ij W ij B ij W ij B ij W ij B ij W

ij ij B ij B

ij B ij W ij B ij W

x x x

x x x x x x x x

x x x

x x x x x

 
 
 
 
 
  

   


    

1 2

1 2

1

2 2 2

1 1 2

1 1

1 2 2

2 2

1 2

) var( ) var( ) var( )

var( ) cov( , )

var( ) var( )

cov( , ) var( )

var( ) var( )

cov( ,

ij ij

ij ij

ij

ij B ij W ij B ij W

ij B ij ij B

ij B ij W x x

ij ij B ij B

x x ij B ij W

ij
x

x x x

x x x

x x SD SD

x x x

SD SD x x

x x
ICC

 
 
 
 
 
   

 
    
 

  

 1 2

2

1 2

1 2

)

(A.12)
cov( , )

ij ij

ij

ij ij

ij B

x x

ij ij B
x

x x

SD SD

x x
ICC

SD SD
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Putting it together:  

1 1 1 1 21

1 2 2

2 2

1 1 2

1 1 1 1

1

1
0

var( ) var( ) var( ) cov( , )

cov( , ) var( )1
0

var( ) var( )

var( ) cov( , )

var( ) var( ) var( ) var( )

cov( ,

ij B ij W ij W ij ij W

W
ij ij W ij W

ij B ij W

ij W ij ij W

ij B ij W ij B ij W

ij

x x x x x

x x x

x x

x x x

x x x x

x x



 
          

  

 


D S

2 2

2 2 2 2

) var( )

var( ) var( ) var( ) var( )
ij W ij W

ij B ij W ij B ij W

x

x x x x

 
 
 
 
 
   

1 1 2

1 1 1 1 1 11 1

1 2 2

2 22 2 2 2

var( ) cov( , ) 1
0

var( ) var( ) var( ) var( ) var( ) var( )

cov( , ) var( ) 1
0

var( ) var(var( ) var( ) var( ) var( )

ij W ij ij W

ij B ij W ij B ij W ij B ij W

B
ij ij W ij W

ij B iij B ij W ij B ij W

x x x

x x x x x x

x x x

x xx x x x

 

 
      
 

   

D S D

     

  

1 1 2

1 1 1 1 1 1 2 2

1 2 2

1 1 2 2 2

)

var( ) cov( , )

var( ) var( ) var( ) var( ) var( ) var( ) var( ) var( )

cov( , ) var( )

var( ) var( ) var( ) var( ) var(

j W

ij W ij ij W

ij B ij W ij B ij W ij B ij W ij B ij W

ij ij W ij W

ij B ij W ij B ij W

x x x

x x x x x x x x

x x x

x x x x x

 
 
 
 
 
  

   


    

1 2

1 2

1

2 2 2

1 1 2

1 1

1 2 2

2 2

1

) var( ) var( ) var( )

var( ) cov( , )

var( ) var( )

cov( , ) var( )

var( ) var( )

cov( ,
1

ij ij

ij ij

ij

ij B ij W ij B ij W

ij W ij ij W

ij B ij W x x

ij ij W ij W

x x ij B ij W

ij
x

x x x

x x x

x x SD SD

x x x

SD SD x x

x
ICC

 
 
 
 
 
   

 
    
 

  



 1 2

2

1 2

2

1 2

)

(A.13)
cov( , )

1

ij ij

ij

ij ij

ij W

x x

ij ij W
x

x x

x

SD SD

x x
ICC

SD SD
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1 1 1 1
T B W

    R D S D D S D  

 

1 1

1 2 1 2

2 2

1 2 1 2

1 2

1 2 1 2

1 2 1 2

1 2

cov( , ) cov( , )
1

cov( , ) cov( , )
1

cov( , )
1

ij ij

ij ij ij ij

ij ij

ij ij ij ij

ij i

ij ij B ij ij W
x x

x x x x

T
ij ij B ij ij W

x x
x x x x

ij ij B

x x

x x x x
ICC ICC

SD SD SD SD

x x x x
ICC ICC

SD SD SD SD

x x

SD SD

   
   

       
   
      



R

1 2

1 2 1 2

1 2

1 2 1 2

cov( , )

(A.14)
cov( , ) cov( , )

1

j ij ij

ij ij ij ij

ij ij W

x x

ij ij B ij ij W

x x x x

x x

SD SD

x x x x

SD SD SD SD

 
 

 
 
 
  

    
  
Using Muthén’s covariance matrices as a starting point, we have shown what the off-diagonals 

of TR will contain. Now, we can check whether this solution matches Gale’s formula for a 

single correlation coefficient, Tr . 

 
We need to show that

1 2 1 2

1 2 1 2

1 2 1 2

from Gale
from Muthen

cov( , ) cov( , )
ICC ICC 1 ICC 1 ICC

ij ij ij ij

ij ij ij ij

ij ij B ij ij W
x x B x x W

x x x x

x x x x
r r

SD SD SD SD
    




 

 
 
Beginning with the first piece of each equation, we can show that

1 2

1 2

1 2cov( , )
ICC ICC

ij ij

ij ij

ij ij B
x x B

x x

x x
r

SD SD
  

 
Recall from Eq. (A.4) that Muthén defines the between-level covariance matrix as: 

  1
. .. . ..

1

( 1)
J

B j j j
j

J N x x x x



   S  

 
Applying this definition to 1 2cov( , )ij ijx x , we obtain:  

  1. 1.. 2. ..
1

1 2cov( , )
( 1)

J

j j j
j

ij ij B

N x x x x

x x
J



 





       (A.15) 
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To convert 1 2cov( , )ij ijx x  into Br , we standardize by 
1 2v a r ( ) v a r ( )i j B i j Bx x , and this matches 

Gale’s definition of Br : 

  1. 1.. 2. ..
1

1 2( 1) var( ) var( )

J

j j j
j

B

ij B ij B

N x x x x

r
J x x


 





           (A.16) 

 
 

We can also rewrite 
1 2

ICC ICC
ij ijx x  as follows:  

 

1

2

11

1 1 1 1

22

2 2 2 2

var( )var( )
ICC

var( ) var( ) var( ) var( )

var( )var( )
ICC

var( ) var( ) var( ) var( )

ij

ij

ij Bij B
x

ij B ij W ij B ij W

ij Bij B
x

ij B ij W ij B ij W

xx

x x x x

xx

x x x x

 
 

 
 

   (A.17, A.18) 

 
 
With everything re-expressed, we can now re-express Gale’s formula:  
 

  
1 2

1. 1.. 2. ..
1 2 1

1 1 2 2 1 2

var( ) var( )
ICC ICC

var( ) var( ) var( ) var( ) ( 1) var( ) var( )ij ij

J

j j j
ij B ij B j

x x B

ij B ij W ij B ij W ij B ij B

N x x x x
x x

r
x x x x J x x



      
    

            
 


 

Cancelling the red terms:  

  

  

1. 1.. 2. ..
1

1 1 2 2

1. 1.. 2. ..
1

1 1

1 2

1 2

2

var( ) va

v

)

ar( ) var( )

var( ) var( )r( ) var( var( ) ( 1)

( 1) var( ) var( ) var( )

J

j j j
j

ij B ij W ij B ij W

J

j j j
j

ij B ij W ij B

ij B ij B

ij B ij B

N x x x x

x x x x J

N x x x x

J

x x

x x

x x x





     
   

        
 

 


 





1 2

2

1 2

var( )

cov( , )
(A.19)

ij ij

ij W

ij ij B

x x

x

x x

SD SD





 

 
Which matches what we derived from the covariance matrix formulation.  
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Following the same steps, we can show that 
1 2

1 2

1 2cov( , )
1 ICC 1 ICC

ij ij

ij ij

ij ij W
x x W

x x

x x
r

SD SD
    

 

  
1 2

1 1. 2 2.
1 2 1 1

1 1 2 2 1

1 1

1

2

1 ICC 1 ICC

var( ) var( )

var( ) var( ) var( ) var( ) ( ) var( ) var( )

var( ) var(

a

)

v r( )

ij ijx x W

NjJ

ij j ij j
ij W ij W j i

ij B ij W ij B ij W ij W ij W

i B

ij

j i

W

j W

r

x x x x
x x

x x x x N J x

x

x

x

x

 

 

 
    

   
        

 








  

  

1 1. 2 2.
1 1

2 2

1 1. 2 2.
1 1

1 1 2 2

2

2

1 2

1

var( ) v (ar( ) ( )

( ) var( ) var( ) var( ) var( )

cov( ,

var( )

var( ) var )

NjJ

ij j ij j
j i

ij B ij W

NjJ

ij j ij j
j i

ij B ij W ij B ij W

ij i

ij W

ij W ij W

x x x x

x x N J x

x x x x

N x

x

J x x x

x

x

x

 

 

 
   

  
      

 

 


  







1 2

)
(A.20)

ij ij

j W

x xSD SD  

 
Which matches what we derived from the covariance formulation.  
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Appendix B: Deriving the maximally general form of the GLS estimator 

Beginning with Scott and Holt’s (1982) original equation:  

1

1 1 1 1

ˆ
1 ( 1) 1 1 ( 1) 1


   



   

                       
   

T T T TJ J J J
Bj Bj Wj Wj Bj j Wj j

GLS
j j j jj j

X X X X X Y X Y

n n
                (B.1) 

Re-expressing 
B jX  in matrix notation: 

 

1

1

col sums
of 

1

1

j j j

j j j j j

j
j

j j

j j

Bj j n n n j

j n n n n n j

n

j n j n j

n j n j

X n

n

n n

n









   
 
 

   
 
  
   

   

X

1 1 1 X

1 1 1 1 1 X

1 1 x

1 1 x

                                                                                               (B.2) 

Where 
jX  contains all the predictor values for cluster j and 

jx  is a row vector of cluster sums 

for the k predictors. Thus, we can re-express the sums in 
jx  as nj times the cluster means, or 

j jn x : 

1

1

j j

j j

j j

Bj n j n j

n j n j j

n n j

X n

n n





   
   
   

1 1 x

1 1 x

1 1 x

             (B.3) 

 
Following a similar process to express 

W jX  in matrix notation:  

 1

1

j j j j

j j j j j

j j j

j j

Wj n j n n n j

n n j j n n n j

n j n n j

n j n j

X n

n





    
       

       
   

I 1 1 1 X

I 1 X 1 1 1 X

1 X 1 1 x

0 X 1 x

          (B.4) 
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Then, expressing T
Bj BjX X  in matrix notation:  

j j j j

j

j j

j

j j j j

j j j j

T
Bj Bj n n j n n j

n

n n j
j n

n n n n j

j n n j n n j

j j j

j j j j j

X X

n n

n n

        
 

       
   

      
 

   

1 1 x 1 1 x

1
1 1 x

x 1

1 1 1 1 x

x 1 1 x 1 1 x

x

x x x

           (B.5) 

 
 

And expressing T
Wj WjX X  in matrix notation: 

 
    

 
0

0

j j j j

j

j j

j

j j j j

j j j j

j

j j j j j

T
Wj Wj n j n j n j n j

n

n j n j
j j n

n n n j n j

j j n n j j n j n j

n

n j j j n j j n j j n n j

X X
         

 
        

   
           

 
 
        
 




0 X 1 x 0 X 1 x
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In the 2,2 cell, notice that 
jj nX 1  is a column vector of predictor sums in cluster j, which is the 

same as nj times a vector of cluster means of the predictors, or 
j jn x . Therefore (B.6) can be 

simplified: 
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Inserting (B.5) and (B.7) into the first term of  (B.1):  
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Next, we express the second term of (B.1) in matrix notation, from earlier, we know 

   j jBj n n jX 1 1 x  and    j jWj n j n jX 0 X 1 x . Inserting these into into the second term of 

(B.1), we obtain:  
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 1 1 x 0 X 1 x        (B.9) 
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Putting together (B.8) and (B.9), the general form of (B.1) in matrix notation is:  
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Appendix C: Expressing the maximally general form of the GLS estimator in terms of 
within- and between-cluster predictor covariance matrices 
 
Our goal is to reframe the GLS formula in terms of covariance matrices rather than sums of 
cross-products to demonstrate how the between and within parts of predictors inform conflated 
GLS estimates. To do this, we use Muthén’s (1990) formulas for the between and pooled-within 
covariance matrices. A complicating factor is that Muthén’s matrices are for endogenous 
variables y, whereas our GLS formula is in terms of x with 1 in the first slot as a multiplier for 
the intercept. 
 
The between part in the GLS formula is (after distributing the summation and assuming equal 
cluster sizes for simplicity): 
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We want to express BQ  in terms of Muthén’s BS .  Muthén’s set of engodenous variables has no 

1 in the first slot. Returning to BQ  and letting jz  be the part of jx  excluding the 1 in the first 

element, re-express the sum of cross-products as: 
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Yielding: 
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Now we focus our attention on 
j jz z . After assuming equal cluster sizes and grand mean 

centering, Muthén’s formula is: 
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Substituting, we have: 
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Thus, we have shown that BQ  from the maximally general GLS estimator can be expressed in 

terms of the between-cluster covariance matrix of predictors.  
 
The within part in the GLS formula is: 
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We want to express WQ  in terms of Muthén’s PWS . Now also letting jZ  represent the part of 

jX  excluding the 1 in the first element, we can re-express the sums of cross-products as: 
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After assuming equal cluster sizes and that predictors have been grand mean centered, Muthén’s 
formula is: 
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To be able to substitute terms from our re-expression of WQ  with Muthén’s PWS , we need to 

rearrange the cross-product in PWS : 
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Recall that the cross-product from WQ , expressed in the final line of C.7, is:  
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The second term of (C.10) matches the second term in the final line of (C.9). However, the first 

terms do not match yet. Now we must show that 
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  where each ijz  is 1 p , where p is the number of predictors. 
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We just showed that 
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Thus, 
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We have shown that that WQ  from the maximally general GLS estimator can be expressed in 

terms of the within-cluster covariance matrix of predictors.  
 
 
 
 
 
 
 
 
 
 
 
 
 


