Multilevel Structural Equation Models for Assessing Moderation Within and Across Levels of Analysis

Kristopher J. Preacher
Vanderbilt University

Zhen Zhang
Arizona State University

Michael J. Zyphur
University of Melbourne

Social scientists are increasingly interested in multilevel hypotheses, data, and statistical models as well as moderation or interactions among predictors. The result is a focus on hypotheses and tests of multilevel moderation within and across levels of analysis. Unfortunately, existing approaches to multilevel moderation have a variety of shortcomings, including conflated effects across levels of analysis and bias due to using observed cluster averages instead of latent variables (i.e., “random intercepts”) to represent higher-level constructs. To overcome these problems and elucidate the nature of multilevel moderation effects, we introduce a multilevel structural equation modeling (MSEM) logic that clarifies the nature of the problems with existing practices and remedies them with latent variable interactions. This remedy uses random coefficients and/or latent moderated structural equations (LMS) for unbiased tests of multilevel moderation. We describe our approach and provide an example using the publicly available High School and Beyond data with Mplus syntax in Appendix. Our MSEM method eliminates problems of conflated multilevel effects and reduces bias in parameter estimates while offering a coherent framework for conceptualizing and testing multilevel moderation effects.

Keywords: multilevel modeling, moderation, interactions, latent variables, random slopes

Supplemental materials: http://dx.doi.org/10.1037/met0000052.supp

Researchers often theorize and test hypotheses of moderation, which occurs when the effect of an independent variable (a focal predictor) depends on the level of another variable (a moderator)—an interaction effect (Cohen, Cohen, West, & Aiken, 2003). Researchers often also have multilevel or hierarchically clustered data, such as children nested within classrooms or employees in organizations, which are usually analyzed with multilevel modeling (MLM; e.g., Raudenbush & Bryk, 2002; Snijders & Bosker, 2012). The result is that multilevel moderation tests are increasingly common. To facilitate these tests, multiple procedures have been proposed (e.g., Aguinis, Gottfredson, & Culpepper, 2013; Hofmann & Gavin, 1998; Preacher, Curran, & Bauer, 2006; Raudenbush, 1989a, 1989b; Raudenbush & Bryk, 1986). Unfortunately, there are various conceptual and statistical problems associated with these procedures.

These problems occur because most approaches to testing multilevel moderation do not separate lower- and higher-level effects into their orthogonal components, and instead conflate these effects by combining them into single coefficients (see Preacher, Zyphur, & Zhang, 2010). Across multiple fields, such conflation is known to cause model misspecification (see Hausman, 1978), resulting in conceptual and statistical problems. Conceptually, researchers (a) create theories and hypotheses that are insensitive to the different yet theoretically meaningful ways that moderation can occur, and (b) specify models reflecting this insensitivity. Statistically, researchers test moderation by (a) unknowingly constraining effects to equality across levels, and (b) introducing bias into estimates of moderation effects by not treating outcomes and predictors as latent variables at the levels of analysis stipulated in theory. As a result, researchers’ theories are often tested with conflated and potentially biased parameter estimates, while theoretically meaningful moderation effects go undetected.

To address these issues our article has two goals. First, we advocate examining level-specific moderation effects, which are rarely considered but have important consequences for theory and practice. Second, to address the problem of multilevel interactions we recommend multilevel structural equation modeling (MSEM) for conceptualizing and estimating multilevel moderation. In so doing, we contribute to multilevel methods in two ways. First, our study is the first to use a latent variable approach to examine all

1 We use the terms “interaction” and “moderation” interchangeably throughout.
possible multilevel moderation effects—effects that have different meanings and offer unique theoretical insights. Second, we illustrate two ways to test multilevel moderation in MSEM: traditional random coefficient prediction (RCP) for cross-level interactions; and latent moderated structural equations (LMS) for same-level interactions. We show how these methods can reduce bias and confusion in interpreting results. By extending LMS to the multilevel case, we also provide an example for researchers to correctly specify their models with RCP and/or LMS.

In what follows, we begin by outlining the logic of multilevel effect decomposition. We then treat the different types of multilevel moderation that can be hypothesized and tested. We map these hypotheses onto an MSEM framework that, compared with existing approaches, is clearer about multilevel effects, less prone to bias, and more versatile by allowing moderation hypotheses to be embedded in larger models. We then give an example of model specification and result interpretation, and conclude with extensions and caveats for our approach.

Decomposing Effects in MLM

In multilevel research, Level-1 (or L1) variables are measured at the lowest level of analysis (e.g., students); Level-2 (or L2) variables are measured at a second, higher level of analysis (e.g., classrooms). L1 variables can be partitioned into two parts, a part that varies only between L2 units (termed \(\text{between-cluster or "B"} \)) and a part that varies only within L2 units (termed \(\text{within-cluster or "W"} \); Raudenbush & Bryk, 2002; Snijders & Bosker, 2012). These components are population analogs of, respectively, cluster means (i.e., \(y_j \)) and scores centered around the cluster means (i.e., \(\bar{y}_j = y_j - \bar{y}_j \)).

Because L1 variables have B and W parts, they can also have B and W effects (Asparouhov & Muthén, 2006; Enders & Tofghi, 2007; Hedeker & Gibbons, 2006; Kreft, de Leeuw, & Aiken, 1995; Lüdtke, Marsh, Robitzsch, & Trautwein, 2011; Lüdtke et al., 2008; Mancl, Leroux, & DeRouen, 2000; Neuhaus & Kalbfleisch, 1998; Neuhaus & McCulloch, 2006). L2 variables have no W part and so are regarded as “only B” variables. Studies may also have “only W” variables, but we do not treat this case because it is rare and implies independent observations.

Between- and Within-Cluster Main Effects

Decomposing B and W effects is discussed by many authors (e.g., Cronbach, 1976; Curran & Bauer, 2011; Lüdtke et al., 2011, 2008; Raudenbush & Bryk, 2002). Their concerns are almost always with decomposing B and W parts of main effects only (i.e., separating effects of L1 predictors into B and W parts). Consider Equation 1, containing a single “confounded” effect of \(x_{ij} \) (i.e., a B and W effect as a single coefficient \(\beta_{ij} \)):

\[
\begin{align*}
\gamma_{ij} &= \beta_{0j} + \beta_{1j} x_{ij} + \epsilon_{ij} \\
\beta_{0j} &= \gamma_{00} + u_{0j} \\
\beta_{1j} &= \gamma_{10} + u_{1j} \\
\gamma_{ij} &= \gamma_{00} + \gamma_{10} x_{ij} + u_{0j} + u_{1j} x_{ij} + \epsilon_{ij}
\end{align*}
\]

(1)

Here, the L1 variable \(x_{ij} \) permits only one effect on \(y_{ij} \) with mean \(\gamma_{10} \) and a variance \(\text{var}(u_{1j}) = \tau_{11} \). Yet, \(x_{ij} \) can be seen as the sum of W and B parts (\(x_i \) and \(x_j \)). This alternative conceptualization replaces \(x_{ij} \) in Equation 1 with \((x_i + x_j) \), and decomposition yields the following separation of the slope of \(x_{ij} \) into the two effects \(\gamma_{10} + u_{1j} \) and \(\gamma_{10} + u_{1j}^* \):

\[
\begin{align*}
y_{ij} &= \gamma_{00} + \gamma_{10} x_{ij} + u_{0j} + u_{1j} x_{ij} + \epsilon_{ij} \\
y_{ij} &= \gamma_{00} + \gamma_{10} x_{ij} + u_{0j} + u_{1j}^* x_{ij} + \epsilon_{ij}
\end{align*}
\]

The term \(\gamma_{10} \) is the effect of \(x_i \) (individuals’ standings on \(x_i \) relative to cluster \(j \)’s mean) on \(y_{ij} \), whereas \(\gamma_{10}^* \) is the \(\text{latent cluster mean’s effect} \) of \(x_{ij} \) (not the observed cluster mean). Critically, \(\gamma_{10} \) and \(\gamma_{10}^* \) may have distinct substantive meanings—and hence very different magnitudes and signs—that are conflated as \(\gamma_{10}^* \). Further, the random slope residual \(u_{1j}^* \) is multiplied not only by \(x_i \), but also \(x_j \), which may be difficult to justify.²

The effects of level-specific components of variables may not always be of interest. At times, the overall effect of a predictor may be of interest. However, estimation of conflated effects combines W and B effects into a single estimate, and thus risks miscalculating both. Due to the possible differences in W and B effects, some authors advocate first decomposing these effects (e.g., Cronbach, 1976; Preacher et al., 2010), and we take this approach here.

It is important to recognize that \(x_j \) in Equation 2 is not a cluster mean; it is the latent standing of cluster \(j \) along \(x_j \). This distinction of means and latent standings of clusters is found in MLM literature stressing that, because clusters’ standings on L1 variables are latent, cluster means measure clusters’ standings with error (Lüdtke et al., 2011, 2008; Marsh et al., 2009). This causes bias by pulling \(y_{01} \) toward \(\gamma_{10} \) (Preacher, Zhang, & Zyphur, 2011). Although large cluster sizes, for example, reduce the magnitude of this problem, to fully account for this bias requires MSEM, wherein latent B parts are used in lieu of means (Lüdtke et al., 2011, 2008; Preacher et al., 2010). In turn, testing moderation with latent components requires latent variable interactions to form product terms at two levels. Below, we treat these latent interactions, but first introduce the conceptual logic of moderation analyses at multiple levels.

Between- and Within-Cluster Interaction Effects

Some MLM literature has treated the decomposition of interactions (Enders & Tofghi, 2007; Hofmann & Gavin, 1998; Raudenbush, 1989a, 1989b; Raudenbush & Bryk, 1986; Ryu, 2015). This decomposition for moderation is more complex than for mediation because the product of two L1 predictors \(x_{ij} \) and \(z_{ij} (x_{ij} z_{ij}) \) should not be separated into B and W parts (\(x_{ij} z_{ij} \)) and (\(x_{ij} z_{ij} \)), such that \((x_{ij} z_{ij}) + (x_{ij} z_{ij}) = x_{ij} z_{ij} \). If this strategy were followed for L1 predictors \(x_{ij} \) and \(z_{ij} \), that were correlated at any value other than 0, the B and W parts of the product term \(x_{ij} z_{ij} \) would be expanded as, respectively,

²The \(u_{1j}^* \) will differ from \(u_{1j} \). The \(u_{1j}^* \) will be smaller on average than corresponding \(u_{1j} \), and interpretable as a mix of two quantities: the departure of a given cluster’s \(x_j \) slope from \(\gamma_{10} \) and a cluster-specific weight permitting heteroscedastic variability in predicted values of \(y_{ij} \) that depends on the cluster mean \(x_j \).
Thus, B and W standings along product terms are sensitive to the covariance of predictors that form the terms. Although \((x_2)_j\) and \((x_1)\), sum to \(x_{ij}\), using them as predictors does not lead to interpretable effects because researchers are not interested in the effects of product terms. Interest lies in the conditional slopes implied by the interaction terms, to which we now turn.

Multilevel Moderation Hypotheses

Methods for testing moderation in MLM borrow from single-level regression approaches (e.g., Aiken & West, 1991; Jaccard & Turrisi, 2003), translated into a multilevel context (Bauer & Curran, 2005; Preacher et al., 2006). For example, MLM literature shows how to include L1 × L1, L1 × L2, and L2 × L2 product terms in a multilevel model and plot and probe the effects. In some cases, product terms must be constructed prior to model specification and estimation by computing products of focal predictors and moderators, and including them in the data set (for L1 × L1 or L2 × L2 interactions). In other cases, a cross-level product term is implied if a random slope for an L1 predictor is regressed on an L2 predictor—for L1 × L2 interactions, as we show below, this is a classic “slopes-as-outcomes” RCP model (Raudenbush & Bryk, 2002).

However, there is little discussion of how product terms in single- and multilevel contexts are incommensurable. In MLM, L1 predictors have B and W parts, so decomposing moderation effects at B and W levels is required but has not yet been treated comprehensively. To correct this oversight we now describe several possible types of multilevel moderation.

Moderation in 1 × (1 → 1) Designs

We begin by considering the following example (inspired by Kidwell, Mossholder, & Bennett, 1997), in which employees (\(i = 1 \ldots n_j\)) are nested within teams (\(j = 1 \ldots J\)).

Example A: Researchers test whether the effect of employee job satisfaction (\(x_{ij}\), the focal predictor) on employee courtesy (\(z_{ij}\), the moderator) varies across levels of employee organizational commitment (\(z_{ij}\)). All three variables are assessed at the employee level (L1) rather than the team level (L2).

We denote this design \(1 \times (1 \rightarrow 1)\), where the first “1” is the level at which the moderator is measured, the second “1” is the level at which the focal predictor is measured, and the last “1” is the level at which the outcome is measured. Using one currently popular strategy (Bauer & Curran, 2005; Preacher et al., 2006), the researcher would fit the following multilevel model:

\[
(x_2)_j = E(x_{ij}z_{ij}) = x_{ij}z_{ij} + \text{cov}(x_{ij}, z_{ij}) \tag{3}
\]

and

\[
(x_1)_j = x_{ij}z_{ij} - E(x_{ij}z_{ij}) = x_{ij}z_{ij} - x_{ij}z_{ij} - \text{cov}(x_{ij}, z_{ij}). \tag{4}
\]

wherein the \(\beta_j\) terms are potentially random coefficients, the \(\gamma\) terms are fixed, \(\epsilon_{ij}\) is a L1 residual, and \(u_{ij}\) are L2 residuals. Including the product of interacting predictors \((x_{ij}z_{ij})\) in the model as a predictor enables the researcher to investigate moderation. The estimated slope \(\gamma_{30}\) is the interaction effect. If \(\gamma_{30}\) is statistically significant, the interaction is “probed and plotted” by assessing the significance of simple slopes of \(y_{ij}\) regressed on \(x_{ij}\) (the focal predictor) at conditional values of \(z_{ij}\) (the moderator) and by plotting conditional regression lines at these values (Aiken & West, 1991; Bauer & Curran, 2005; Preacher et al., 2006).

This practice is problematic because it does not clarify the many potential moderation hypotheses for \(x_{ij}\) and \(z_{ij}\) that may be substantively meaningful and can provide theoretical insights. To see the potential forms of moderation, consider Equation 6, which reformulates the model in Equation 5 by partitioning each L1 variable into B and W parts with separate slopes (letting \(x_{ij} = x_j + x_i\) and \(z_{ij} = z_i + z_j\) but recalling that the B parts will be treated as latent, as in Lüdtke et al., 2011, 2008; Marsh et al., 2009; and Preacher et al., 2010 as we illustrate later).

\[
\text{Reduced-form: } y_{ij} = \gamma_{00} + \gamma_{10}x_{ij} + \gamma_{20}z_{ij} + \gamma_{30}x_{ij}z_{ij} + u_{ij}
\]

\[
\text{fixed part } + u_{ij} + u_{1j}x_{ij} + u_{2j}z_{ij} + u_{3j}x_{ij}z_{ij} + \epsilon_{ij}
\]

\[
\text{random part} \tag{5}
\]

Note that parameters and residuals with the same symbols in Equations 5 and 6 have different interpretations. Unlike Equation 5, which has one interaction effect with fixed and random parts, the population model in Equation 6 has four interaction effects: a W interaction with fixed and random parts (\(\gamma_{30} + \gamma_{31}\)), two fixed cross-level interactions (\(\gamma_{11}\) and \(\gamma_{21}\)), and a B interaction (\(\gamma_{03}\)).

Thus, traditional analyses mask potentially important types of interactions.

3 Any of these fixed effects could be treated as random at Level 3 if a third level exists.
Before continuing we make three points. First, not all possible interactions will always be of interest, and limiting the number of effects investigated will ease model estimation. Second, Equation 6 shows that the model in Equation 5 implies terms $u_{ij}x_{ij}$, $u_{ij}z_{ij}$, and $u_{ij}x_{ij}z_{ij}$. In brief, these terms allow the B effects of both predictors to vary across clusters. Although these terms are not explicit in models like Equation 5, similar terms are discussed in econometrics as capturing heteroscedasticity (e.g., Hildreth & Houck, 1968; Johnston, 1984; Wooldridge, 2002). Whatever their interpretation, these effects are not identifiable without model constraints and we do not discuss them further because we presume that they are rarely of interest. Third, we could augment Equation 6 to regress β_{ij} on x_{ij} and regress β_{ij} on z_{ij}, essentially permitting cross-level interactions of the W and B parts of each variable with itself (i.e., the same variables). Such interactions may not be uncommon, but they are not our main interest.

Given the difference between Equations 5 and 6, three sensible moderation hypotheses are possible for scenarios like Example A, wherein x_{ij} is a focal predictor and z_{ij} a moderator. These and subsequent prototypical hypotheses are listed in Table 1 for easy reference.

Hypothesis A1: The W part of z_{ij} moderates the W effect of x_{ij} on y_{ij}, so that the effect of an employee’s relative job satisfaction within a team on an employee’s relative courtesy is moderated by the employee’s relative organizational commitment in a team.

Hypothesis A2: The B part of z_{ij} moderates the W effect of x_{ij} on y_{ij}, meaning the effect of an employee’s relative job satisfaction within a team on an employee’s relative courtesy is moderated by a team’s collective organizational commitment.

Hypothesis A3: The B part of z_{ij} moderates the B effect of x_{ij} on y_{ij}, meaning that the effect of a team’s collective job satisfaction on collective employee courtesy is moderated by the team’s collective organizational commitment.

Examining only γ_{00} in Equation 5 conflates coefficients that should be separately estimated, as in Equation 6—it may be that the interaction effect in Hypothesis A1 is positive and significant, but the effect in Hypothesis A2 is negative and nonsignificant, and so on. Also, the single conflated coefficient γ_{00} in Equation 5 can be influenced by intraclass correlations (ICC) and sample size, but this is not true for the coefficients in Hypotheses A1–A3 (see Cronbach & Snow, 1977).

Moderation in $2 \times (1 \rightarrow 1)$ Designs

Example B: Researchers test whether the effect of job satisfaction (x_{ij}, the focal predictor) on courtesy (y_{ij}) is moderated by team cohesiveness (z_{ij}, the moderator), measured at L2.

Because the moderator is at L2 and both the focal predictor and outcome are at L1, we denote this a $2 \times (1 \rightarrow 1)$ design. This yields the following reduced-form multilevel model:

$$y_{ij} = \gamma_{00} + \gamma_{10}x_{ij} + \gamma_{1j}z_{ij} + u_{0j} + u_{ij}x_{ij} + \epsilon_{ij}$$ \hspace{1cm} (7)

Most MLM literature tests γ_{11} to assess moderation, but γ_{10} and γ_{11} are conflated coefficients due to x_{ij} varying at W and B levels. If x_{ij} is partitioned into level-specific parts we obtain:

L1 equation:

$$\begin{align*}
y_{ij} &= \beta_{0j} + \beta_{1j}x_{ij} + \epsilon_{ij} \\
\beta_{0j} &= \gamma_{00} + \gamma_{0j}x_{ij} + \gamma_{02}z_{ij} + u_{0j} \\
\beta_{1j} &= \gamma_{10} + \gamma_{1j}z_{ij} + u_{1j}
\end{align*}$$

L2 equations:

$$\begin{align*}
y_{ij} &= \gamma_{00} + \gamma_{10}x_{ij} + \gamma_{1j}z_{ij} + u_{0j} + u_{ij}x_{ij} + \epsilon_{ij}
\end{align*}$$

Reduced-form:

$$y_{ij} = \gamma_{00} + \gamma_{10}x_{ij} + \gamma_{1j}z_{ij} + u_{0j} + u_{ij}x_{ij} + \epsilon_{ij}$$ \hspace{1cm} (8)

(As before, terms with the same symbols in Equations 7 and 8 have different meanings.) Equation 8 shows that there are two interaction hypotheses in $2 \times (1 \rightarrow 1)$ designs, which may be stated as:

Hypothesis B1: The B variable z_{ij} moderates the W effect of x_{ij} on y_{ij} such that the effect of an employee’s relative job satisfaction in a team on employee courtesy is moderated by the team’s cohesiveness.

Hypothesis B2: The B variable z_{ij} moderates the B effect of x_{ij} on y_{ij} such that the effect of a team’s collective job satisfaction on employee courtesy is moderated by the team’s cohesiveness.

The interaction effect in Equation 7 is often termed cross-level. Yet, only Hypothesis B1’s slope (γ_{1j} in Equation 8) is truly cross-level in that an L2 moderator influences a W slope (Aguinis et al., 2013; Mathieu, Aguinis, Culpepper, & Chen, 2012). Thus, common practice conflates the two γs that a researcher presumably would prefer to examine separately (for Hypotheses B1 and B2), and different conclusions for sign, magnitude, and practical significance could be drawn for Hypotheses B1 and B2 had each been tested separately. Further, although decomposing L1 predictors in

Note. The numbers in the Design column show the level at which each variable was measured (rather than conceptualized and analyzed).

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Notation</th>
<th>Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>$z_{ij} \times (x_{ij} \rightarrow y_{ij})$</td>
<td>$1 \times (1 \rightarrow 1)$</td>
</tr>
<tr>
<td>A2</td>
<td>$z_{ij} \times (x_{ij} \rightarrow y_{ij})$</td>
<td>$1 \times (1 \rightarrow 1)$</td>
</tr>
<tr>
<td>A3</td>
<td>$z_{ij} \times (x_{ij} \rightarrow y_{ij})$</td>
<td>$1 \times (1 \rightarrow 1)$</td>
</tr>
<tr>
<td>B1</td>
<td>$z_{ij} \times (x_{ij} \rightarrow y_{ij})$</td>
<td>$2 \times (1 \rightarrow 1)$</td>
</tr>
<tr>
<td>B2</td>
<td>$z_{ij} \times (x_{ij} \rightarrow y_{ij})$</td>
<td>$2 \times (1 \rightarrow 1)$</td>
</tr>
<tr>
<td>C</td>
<td>$z_{ij} \times (x_{ij} \rightarrow y_{ij})$</td>
<td>$2 \times (2 \rightarrow 1)$</td>
</tr>
<tr>
<td>D</td>
<td>$z_{ij} \times (x_{ij} \rightarrow y_{ij})$</td>
<td>$1 \times (2 \rightarrow 1)$</td>
</tr>
</tbody>
</table>
cross-level interactions has been suggested (Aguinis et al., 2013; Cronbach & Webb, 1975; Enders & Tofighi, 2007; Hofmann & Gavin, 1998; Raudenbush, 1989a, 1989b; Raudenbush & Bryk, 1986), the popular method of centering L1 predictors at the cluster mean and including this mean as a predictor biases estimates of B effects (Preacher et al., 2011).

Moderation in 2 × (2 → 1) Designs

Example C: Researchers test whether the effect of team salary range (x_j, the focal predictor) on employee courtesy (y_{ij}) is moderated by team cohesiveness (z_j, the moderator). Both x_j and z_j are L2 variables and team cohesiveness is assessed by external raters.

Because the focal predictor and the moderator are assessed at L2, we denote this a 2 × (2 → 1) design, yielding the following reduced-form multilevel model:

$$y_{ij} = \gamma_{00} + \gamma_{01}x_j + \gamma_{02}z_j + u_{0j} + \epsilon_{ij} \quad (9)$$

MLM literature appropriately tests $\hat{\gamma}_{03}$ to examine moderation—x_j and z_j do not vary within clusters, so they cannot be partitioned into B and W parts. The only moderation hypothesis is:

Hypothesis C: The B variable z_j moderates the effect of x_j on y_{ij}, meaning that the effect of a team’s salary range on employee courtesy is moderated by the team’s cohesiveness.

Yet, if team cohesiveness is rated by team members, using team means to calculate x_jz_j biases estimates of $\hat{\gamma}_{03}$. In such cases, cluster means should be treated as latent (as in Hypothesis A3).

Moderation in 1 × (2 → 1) Designs

Example D: Researchers test whether the effect of team diversity (x_j, the focal predictor) on employee creativity (y_{ij}) is moderated by the employee’s openness to experience (z_j, the moderator). x_j is a L2 variable and y_{ij} and z_{ij} are assessed at L1.

Because the focal predictor is L2 and the moderator of this B effect is at L1, we denote this design a 1 × (2 → 1) design. This yields the following reduced-form multilevel model:

$$y_{ij} = \gamma_{00} + \gamma_{01}x_j + \gamma_{11}z_jx_j + u_{0j} + u_{1j}z_{ij} + \epsilon_{ij} \quad (10)$$

In prior work using this design, researchers often tested a cross-level interaction using $\hat{\gamma}_{11}$ from Equation 7. Yet, this conflates the B and W parts of z_{ij} if the proper centering method is not used. More importantly, it overflows how the hypothesis concerns not whether x_j moderates the slope of y_{ij} regressed on z_{ij}, but instead whether the B part of z_{ij} moderates the B effect of x_j on y_{ij}. Partitioning Equation 10 makes this point:

L1 equation:

$$y_{ij} = \beta_0 + \beta_1z_{ij} + \epsilon_{ij}$$

L2 equations:

$$\begin{align*}
\beta_0 &= \gamma_{00} + \gamma_{01}x_j + \gamma_{02}z_j + u_{0j} \\
\beta_1 &= \gamma_{10} + \gamma_{11}x_j + u_{1j}
\end{align*}$$

Reduced-form:

$$y_{ij} = \gamma_{00} + \gamma_{01}x_j + \gamma_{02}z_j + \gamma_{10}z_jx_j + u_{0j} + \epsilon_{ij} \quad (11)$$

As in Example B, there are two interactions in Equation 11, but probably only one is of interest: γ_{03}, the moderation of x_j’s B effect by the B part of z_{ij}. The corresponding hypothesis is:

Hypothesis D: The B part of z_{ij} moderates the B effect of x_j on y_{ij}, so that the effect of team diversity on employee creativity is moderated by the team’s collective openness to experience.

The other interaction in Equation 11, γ_{11}, is cross-level with the predictor (x_j) moderating the W effect of the moderator (z_{ij}). Thus, the roles of moderator and predictor switch if we interpret γ_{11}, rendering the research question substantively different from Example D. Example D does not concern a cross-level interaction, but rather a B interaction of L1 and L2 predictors.

Summary

To summarize, current practices for testing multilevel moderation present multiple problems. First, they do not help researchers hypothesize and test all moderation relationships that may exist (e.g., Hypotheses A1, A2, A3, B1, B2, and D). Second, many published interaction effects are “uninterpretable blends” of multiple and substantively unique coefficients that may differ in direction, magnitude, and interpretation across levels (Cronbach, 1976, p. 9.20). Further, suggested solutions for this second problem treat means of L1 variables as observed, yielding biased effect estimates, with bias increasing as a predictor’s ICC and cluster size decrease in the presence of different effects across levels (Lüdtke et al., 2011, 2008).

Below, we describe how to solve these problems by conceptualizing and testing all possible interactions involving the W and B parts of L1 variables with each other or with L2 variables, and/or among L2 variables (as in Examples A–D above). This requires an approach that (a) decomposes observed L1 variables into their latent B and W parts, and (b) allows multiplying these latent variables or components of variables to form product terms. To do this, we connect literature on observed variable interactions in MLM, the decomposition of B and W effects in MLM, and latent variable interactions, all within an MSEM framework.

An MSEM Framework for Assessing Multilevel Moderation

coefficients to each other, and matrices in Equations 12 and 13 indicates that some elements may vary across clusters. In these equations, these limitations (e.g., Chou, Bentler, & Pentz, 2000; Jedidi & or unbalanced cluster sizes. Recent MSEM methods overcome software, which did not allow random coefficients, missing data, separate B and W models with the multigroup function of SEM methods that treat the B parts of L1 variables as latent: the vector of random coefficients for the latent variables, contains effects relating random variables, and allows latent outcome variables at L2 (unlike MLM); it treats the B part of L1 variables as latent; and it allows latent variable interactions for testing multilevel moderation.

All of this is done by adding random coefficients to the familiar SEM equations, treating a subset of parameters as randomly (co)varying across clusters and modeling the (co)variances with a B structural model. The equations for MSEM can be shown as follows:

\[y_{ij} = \Lambda \eta_{ij} \]
\[\eta_{ij} = \alpha_j + B_j \eta_{ij} + \xi_j \]
\[\eta_j = \mu + B \eta_j + \zeta_j \]

Equations 12 and 13 are similar to measurement and structural equations (respectively) commonly seen in SEM. A subscript on matrices in Equations 12 and 13 indicates that some elements may vary across clusters. In these equations, \(\Lambda \) is a matrix of 0 and 1 loadings\(^5\) linking observed variables in \(y_{ij} \) to latent variables in \(\eta_{ij} \). \(\eta_{ij} \) is a vector of all latent variables from each level, \(\alpha_j \) is a vector of random coefficients for the latent variables, \(B_j \) is a matrix of structural effects relating latent variables, \(\xi_j \) contains W structural residuals, \(\eta_j \) is a vector of all random coefficients (including random slopes), \(\mu \) contains intercepts or means of all of the random coefficients, \(B \) contains effects relating random coefficients to each other, and \(\zeta_j \) contains B structural residuals—it is customary to permit the residuals of random effects not otherwise related to freely covary. Of course, as with all SEM-based analyses, strong theory rather than merely model-based estimation is required to enhance the veracity of causal inferences.

We now describe tests of multilevel moderation using two methods that treat the B parts of L1 variables as latent: random coefficient prediction (RCP) and latent moderated structural equations (LMS). Whereas RCP is already well known as “slopes-as-outcomes” MLM, LMS is a new method for multilevel moderation. LMS is an important tool because RCP is suited for cross-level interactions that include latent B parts of L1 variables, but LMS is preferable for same-level interactions for multiple reasons. For example, because the random slope of a L1 predictor is an L2 variable, it cannot be expressed as a function of another L1 predictor (to test Hypothesis A1), so RCP is applicable only to interactions with at least one L2 variable or B component of an L1 variable. Alternatively, LMS is applicable in all situations we describe.

Random Coefficient Prediction (RCP) Method

In RCP a random slope is predicted by a moderator. The slope’s residual variance can be fixed to zero (or a small value to assist in estimation), so it need not be “random” while still varying as a function of predictors, as in typical cross-level interactions with L1 predictors and L2 moderators. Consider Equation 7 from Example B, expressed with separate L1 and L2 equations:

L1 equation: \(y_{ij} = \beta_{0j} + \beta_{1j} x_{ij} + \varepsilon_{ij} \)
L2 equations: \(\begin{align*} \beta_{0j} &= \gamma_{00} + \gamma_{01} z_j + \eta_{0j} \\ \beta_{1j} &= \gamma_{10} + \gamma_{11} z_j + \eta_{1j} \end{align*} \)

Reduced-form: \(y_{ij} = \gamma_{00} + \gamma_{01} z_j + \gamma_{11} x_{ij} z_j + \eta_{0j} + \eta_{1j} x_{ij} + \varepsilon_{ij} \)

In the L2 slope equation, the random slope \(\beta_{ij} \) is moderated by the B moderator \(z_j \), implying a reduced-form equation with a product term \(x_{ij} z_j \) multiplied by \(\gamma_{11} \). In Equation 15, \(\beta_{1j} \) is conflated because \(x_{ij} \) has B and W variance (and therefore B and W effects). However, \(x_{ij} \) can be split into W and B parts, yielding Equation 8 in Example B. In the reduced-form of Equation 8, the W slope of \(x_i \) is moderated by the B moderator \(z_j \) addressing Hypothesis B1. This is a truly cross-level interaction—one predictor has strictly W variance and the other strictly B variance.

To extend this logic to MSEM, consider how MSEM allows testing Hypothesis A2 in a \(1 \times (1 \rightarrow 1) \) design, as in Example A. The measurement equation (see Equation 12) is:

\[y_{ij} = \begin{bmatrix} x_{ij} \\ z_{ij} \\ y_{ij} \end{bmatrix} = \Lambda \eta_{ij} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \eta_{0j} \\ \eta_{1j} \\ \eta_{ij} \end{bmatrix} \]

This equation links observed variables to latent components in \(\eta_{ij} \) that vary strictly at W or B levels. The vector \(y_{ij} \) contains all observed L1 variables for member \(i \) of cluster \(j \). The loadings in \(\Lambda \) are fixed to 1 or 0 to associate each observed L1 variable with one or both of two level-specific components. For example, Equation 16 implies that the observed variable \(z_{ij} \) is expressible as the sum of the W latent component \(\eta_{0j} \) and the B latent component \(\eta_{1j} \).

Equation 17 expresses the L1 elements of the latent vector \(\eta_{ij} \) as functions of fixed and random coefficients and the L1 parts of other L1 predictors. The L2 elements of \(\eta_{ij} \) are associated with L2

\(^5\) These loadings are used merely to decompose variables into latent B and W parts. Although MSEM does permit latent variables with multiple indicators, we focus here on multilevel path analysis for simplicity.
parts which are modeled in Equation 18 (denoted α). To test Hypothesis A2, the W part of x_{ij} must have a random slope that is regressed on the B part of z_{ij} (the residual variance of this slope could be constrained to 0). In Equation 17, this random slope is $B_{s_{ij}}$ (similar to β_s, in Equation 6). The W effect of z_{ij} is not included in Equation 17, but could be added if desired.

$$
\eta_i = \alpha_i + B \eta_j + \zeta_i
$$

(17)

In Equation 18 the four random coefficients from Equation 17 are stacked into a vector η_j and expressed as functions of means (μ) and of each other:

$$
\eta_j = \mu + \beta_{s_{ij}} + \zeta_{ij}
$$

(18)

In Equation 18, $\beta_{s_{ij}}$ and $\beta_{s_{ij}}$ are conditional main effects of the B parts of x_{ij} and z_{ij} (similar to γ_{01} and γ_{02} in Equation 6). $\mu_{b_{s_{ij}}}$ is the mean of the random slope of the W part of x_{ij} (similar to γ_{10} in Equation 6), and $\beta_{s_{ij}}$ is the interaction effect of the W part of x_{ij} with the B part of z_{ij} (similar to γ_{11} in Equation 6)—this latter effect is the B part of ζ_{ij} moderating the W effect of x_{ij} on y_{ij}. Hypothesis B1 can be tested using a similar model that omits rows and columns for the W part of z_{ij}.

However, it is less well known that RCP can be used to test moderation in single-level models by regressing a dependent variable on a predictor with a random slope, and predicting the slope with a moderator (Muthén, 2011; Muthén & Muthén, 1998–2014, example 3.9; Yuan, Cheng, & Maxwell, 2014)—in single-level models, the slope’s residual variance is constrained to zero. This approach can be used to model interactions corresponding to Hypotheses A3, B2, C, and D, but we do not explore it further because of bias, efficiency, and convergence problems that we describe later. Instead, we note that RCP is very useful for modeling cross-level interactions, but LMS can be used for cross- and same-level interactions, which we treat in the next section.

To illustrate our models we use a variant of SEM path diagrams (as in Muthén & Muthén, 1998–2014; Preacher, 2011; Preacher et al., 2011, 2010). As in path diagrams, circles are served variables horizontally in the center of the diagram, the W model is below the center, and the B model is above the center. Random slopes have a darkened circle on the slope in question and appear as latent variables in the B model. In Figure 1 Panel A, a B1 hypothesis (cross-level interaction) is shown as the effect of the L2 moderator z_{ij} on a random slope s_{ij}. The slope is treated as random so that it can be regressed onto z_{ij}, but its residual variance and the covariance with y_{ij} are fixed to zero for simplicity—these constraints may be relaxed in practice.

Latent Moderated Structural Equation (LMS) Method

Interactions are often tested by computing and then including products as predictors. Products are implicit in RCP, but they can be made explicit by computing a product involving at least one random B part of an L1 variable as a latent predictor. This cannot be done directly because it requires latent interactions. To solve this problem in the single-level case, multiple approaches have been suggested for Latent \times Latent and Latent \times Observed variable interactions.

Some approaches approximate latent \times latent interactions with products of latent variable indicators (e.g., Jöreskog & Yang, 1996; Kenny & Judd, 1984). Leite and Zuo (2011) extended two such methods to MSEM: the mean-centered unconstrained (Marsh, Wen, & Hau, 2004) and residual-centered unconstrained (Little, Bovaird, & Widaman, 2006) approaches. When applied to multilevel data, both methods involve treating products of cluster means as indicators, but these are unreliable when ICCs, cluster sizes, and the correlation of the cluster-average variables are small. The approach we use in MSEM is superior in terms of bias and efficiency, and is simple in terms of specification: latent moderated structural equations (LMS; Klein & Moosbrugger, 2000). Although meant to be a single-level approach, LMS can be applied to multilevel data by creating latent interactions among random coefficients. To explain, Klein and Moosbrugger (2000) and Schermelleh-Engel, Klein, and Moosbrugger (1998) proposed LMS for modeling two-way interactions between latent and/or measured variables. Consider a standard measurement model, in which measured “indicator” variables in the mean-centered vector y_j (containing indicators of latent predictors and latent outcomes) are related to latent variables η_j by loadings in Λ, and δ_i is a vector of residuals:

$$
y_j = \Lambda \eta_j + \delta_i
$$

(19)

We use the abbreviation LMS to refer to models estimated using both the traditional LMS estimator, which employed ML estimation via the EM algorithm and a mixture of normal distributions to approximate the nonnormality of latent products, and the newer quasi-maximum likelihood (QML) estimator, which approximates the likelihood function by accommodating nonnormal product distributions with mixtures of normal distributions. Both methods are based on the same model specification, but only the mixture-based LMS method is included in Mplus. See Kelava, Moosbrugger, Dimitruk, and Schermelleh-Engel (2008), Kelava et al. (2011), Klein & Muthén (2007), and Moosbrugger, Schermelleh-Engel, Kelava, and Klein (2009) for further details, advantages, and disadvantages of these methods.
Unlike other strategies for assessing latent interactions, LMS does not rely on products of indicators, instead directly representing latent interactions in the structural equation:

\[
\eta_j = \alpha + B\eta_j + j\eta_j'\Omega\eta_j + \xi_j
\]

(20)

where \(\alpha \) contains intercepts, \(\xi_j \) the structural regression residuals, \(B \) the conditional main effects of latent variables on other latent variables, and \(\Omega \) the quadratic or two-way interactions of latent variables. \(\Omega \) is upper-triangular with a zero diagonal. \(j \) is a vector that assigns these effects to one latent outcome in \(\eta_j \). Because observed indicator distributions depend on the nonnormal distribution of latent products, the joint distribution of the indicators is approximated with a continuous normal mixture. Interactions can be tested using either Wald or likelihood ratio tests (Klein & Moosbrugger, 2000), but the latter is more accurate in small samples and is scale-independent (Cham, West, Ma, & Aiken, 2012; Kelava et al., 2011). Mplus implements this approach and it performs well in simulations (see Klein & Muthén, 2007).

To see how LMS models interactions in MSEM, consider a model for Hypotheses A1–A3 in a \(1 \times (1 \rightarrow 1) \) design. The measurement equation is as in Equation 16, linking observed variables to latent parts in \(\eta_j \), that vary strictly at W or B levels. Equation 21 expands Equation 20 with product terms for LMS, expressing the W elements in \(\eta_j \) as functions of the W parts of other L1 predictors as well as fixed and random coefficients. B elements of \(\eta_j \) are linked to B components (denoted \(\alpha \)) modeled in Equation 22. To test Hypotheses A1–A3, we modify Equation 20 to include a term reflecting regression of \(\eta_{ij} \) on the products of latent components of \(\eta_j \). Specifically, \(\eta_{ij}'\Omega\eta_j \) is a scalar sum, and \(j \) is a vector that assigns this sum to only one element of the latent vector \(\eta_{ij} \).

\[
\eta_{ij} = \alpha + B\eta_j + j\eta_j'\Omega\eta_j + \xi_{ij}
\]

(21)

Figure 1. Panel A: Path diagram for a \(2 \times (1 \rightarrow 1) \) design testing a cross-level interaction effect: \(z_j \) predicts \(x_{ij} \), the random slope for the W component of \(x_j \). Panel B: Path diagram for a \(2 \times (1 \rightarrow 1) \) design testing the interaction of \(z_j \) and the B component of \(x_j \). RCP = random coefficient prediction; LMS = latent moderated structural equations.
In Equation 21, \(B_{x_{ij}} \) and \(B_{z_{ij}} \) are slopes for the W parts of \(x_{ij} \) and \(z_{ij} \). \(B_{x_{ij}z_{ij}} \) is the effect of the product of the W parts of \(x_{ij} \) and \(z_{ij} \)—the W interaction effect (Hypothesis A1). \(B_{x_{ij}z_{ij}} \) and \(B_{z_{ij}z_{ij}} \) are cross-level interaction effects—respectively, the interaction of the W part of \(x_{ij} \) and B part of \(z_{ij} \), and the interaction of the B part of \(x_{ij} \) and W part of \(z_{ij} \) (Hypothesis A2). Equation 22 stacks all random coefficients from Equation 21 in a vector \(\eta_j \), expressed as a function of means (\(\mu \)):

\[
\eta_j = \mu + B \eta_j + j \eta_j + \xi_j
\]

Equations 16, 21, and 22 imply the following equations for \(x_{ij} \), \(z_{ij} \), and \(y_{ij} \), with B and W parts as:

\[
x_{ij} = \eta_{ij} + \xi_{ij} = \mu_{x_{ij}} + \xi_{ij} = \mu_{x_{ij}} + \xi_{ij} + \frac{\xi_{ij}}{W \text{ part}}
\]

\[
z_{ij} = \eta_{ij} + \xi_{ij} = \mu_{z_{ij}} + \xi_{ij} = \mu_{z_{ij}} + \xi_{ij} + \frac{\xi_{ij}}{W \text{ part}}
\]

\[
y_{ij} = \eta_{ij} + \xi_{ij} + \beta_{y_j} + (\mu_{x_{ij}z_{ij}} + \xi_{ij}) + (\mu_{x_{ij}z_{ij}} + \xi_{ij})
\]

Equation 25 contains all four possible interaction effects in \(1 \times (1 \rightarrow 1) \) designs. In fact, terms in Equation 25 match those in Equation 6 with different symbols. Usually, not all of these effects will be of interest at once. Hypotheses B1, B2, C, and D can be tested by omitting rows and columns corresponding to the W parts of some variables in the model in Equations 16, 21, and 22.

To illustrate the LMS method, we again use an extension of SEM path diagrams. In Figure 1 Panel B, B2 hypothesis (B interaction) is modeled by including the latent product \(x_j \times z_j \) as a predictor of \(y_j \). For simplicity, we omitted the covariances between the interaction term and its components, i.e., \(x_j \) and \(z_j \).

Advantages and Disadvantages of the RCP and LMS Methods

RCP and LMS allow testing interactions that are often overlooked and, when estimated using methods other than MSEM, may be
subject to severe bias. Yet, RCP and LMS are not universally applicable; there are circumstances when one is preferred over the other.

First, researchers may want to model interaction effects as varying across clusters, such as the effect in Hypothesis A1 varying across teams. RCP cannot treat interactions as random slopes, but LMS can. Second, RCP and LMS can be computation-intensive, requiring numerical integration and creative model specifications to achieve convergence. To ease estimation, it is possible to simultaneously apply RCP and LMS. For example, one could test Hypothesis B1 with RCP and B2 with LMS (as we later show). Third, with nonnormal predictors or moderators LMS yields biased SEs (Klein & Moosbrugger, 2000; Klein & Muthén, 2007; Klein, Schermelleh-Engel, Moosbrugger, & Kelava, 2009) and biased point estimates (Coenders, Batista-Foguet, & Saris, 2008). Yet, for MSEM, the central limit theorem implies that cluster means become normal as a function of increasing cluster size, so cluster means may be normal even if L1 variables are not. As such, nonnormality may be less problematic for B parts of L1 variables, but the normality of any variable in a latent variable interaction is an issue. This said, simulations show that with moderate levels of nonnormality LMS is more efficient than competing approaches (see Cham et al., 2012). Fourth, RCP can model same-level interactions. However, we recommend LMS because RCP cannot estimate interactions among the W parts of L1 variables, and preliminary simulations showed good performance for LMS in the models we have described, but same-level RCP moderation was often biased and inefficient (see online supplemental materials).9

Finally, it is possible to use observed cluster means at the B level in lieu of latent cluster means for testing Hypotheses A2, A3, and B2 (Aguinis et al., 2013; Cronbach & Webb, 1975; Enders & Tofghi, 2007; Hofmann & Gavin, 1998; Ryu, 2015). In some cases this may be preferred, such as with sampling ratios near 1.0 (nearly all units within a cluster are sampled). In such cases, the L2 aggregate of the L1 variable is termed **formative**. More often, the observed cluster mean is considered a sample proxy for a population quantity, in which case it is termed **reflective** (for a discussion see Lüdtke et al., 2008). Using observed cluster means yields models that converge more quickly and are less prone to estimation errors. However, recent work (Preacher et al., 2011) shows that using observed cluster means in lieu of reflective latent aggregations leads to considerable bias in both the estimates of main effects and their SEs, even under the most favorable conditions of large cluster sizes and large ICCs. There is every reason to expect that using observed cluster means will result in poor performance in the multilevel moderation context in the reflective case. To support this assertion we ran a small simulation study that demonstrates the observed-means approach to have greater bias in both effects and SEs, and lower CI coverage than the MSEM approach with latent variables (see online supplemental materials). However, because the W effects will be very similar using either observed or latent means in the B model, the observed means approach can be useful as a way to obtain starting values for MSEM in situations where convergence is challenging.

Simple Slopes Analysis for Multilevel Moderation Models

If statistically significant, an interaction effect is usually "plotted and probed" to examine a moderator’s influence on the effect of a focal predictor by plotting regression lines at several values of the moderator (Aiken & West, 1991). Each regression line has a **simple intercept** and **simple slope** that are conditional on the moderator, often at its mean and ± 1 SD. Statistical significance of the intercepts and slopes is determined using t tests or with confidence intervals plotted as continuous functions of the moderator, forming confidence bands. These methods are used in single-level regression (Aiken & West, 1991), latent growth models (Curran, Bauer, & Willoughby, 2004), and multilevel models when L1 effects are not decomposed (Bauer & Curran, 2005; Curran, Bauer, & Willoughby, 2006; Preacher et al., 2006).

Similar procedures can be used for multilevel moderation (Raudenbush & Bryk, 1986), but this is less straightforward in MSEM because latent W and B parts of L1 variables are not observed. With latent variables assumed to be normal, conditional values based on estimated means and SDs of latent moderators can be chosen. For W latent parts, means of predictors and outcomes are zero because L1 variables are cluster-mean centered in MSEM. Otherwise, the same procedures may be used (Muthén, 2012). We now give an example of RCP and LMS.

Empirical Example: High School and Beyond

In this example we use a subsample of the 1982 High School and Beyond data with 7,185 students nested in 160 schools (see Raudenbush & Bryk, 2002). We show how to use theory to guide research design and make appropriate data analysis decisions by following **five simple steps**. Step 1: researchers must understand the interaction forms that are possible (see Table 1), and they should use substantive theory to guide their research questions, hypotheses, and model specifications. A great deal of literature suggests that poverty and school size interact in predicting achievement (e.g., Bickel & Howley, 2000; Cobbold, 2006). Specifically, the positive relationship between socioeconomic status and student achievement typically increases as school size increases, implying that smaller schools are better for low-SES students. We wish to determine whether this common finding can be attributed to moderation of the within-school effect of SES, the between-school effect, or both. In other words, we are interested in comparing and contrasting Hypotheses B1 and B2 with a 2 × (1 → 1) design as shown in Table 1.

Step 2: researchers must choose between a latent versus an observed-means approach. As shown below, the latter approach can bias point estimates and SEs, but this bias is reduced as cluster size, number of clusters, and ICCs increase. Without sampling error, the observed-means approach should be used, but in our example we want to correct for sampling error variance. Therefore, we specified latent means in a model with mathematics achievement (math) predicted by socioeconomic status (ses, an L1 predictor) and school enrollment (size, an L2 moderator), which is the number of students in a school divided by 1,000 to aid

8 In Mplus, this involves regressing a phantom variable onto the latent product with a fixed slope, then regressing the outcome onto the phantom variable with a random slope. Example syntax is provided in the online appendix for this, along with syntax for all examples we discuss.

9 An online appendix at http://quantpsy.org contains code for all of the models mentioned or illustrated in this article.

10 We varied number of clusters (J = 50, 100, 200), cluster size (nJ = 5, 10, 20), and predictor ICC (.5 and .1). Results are available in the online appendix at http://quantpsy.org.
convergence). Because ses is an L1 predictor with B variance (ICC\textsubscript{ses} = .27), it is plausible that (a) W standings on ses could exert an effect on W standings on math, and (b) latent B standings on ses could predict B standings on math. Moreover, either or both of these effects can be moderated by size. Thus, we specify a model testing Hypotheses B1 and B2 described earlier:

\[
\begin{align*}
\text{math}_{ij} &= \beta_{0i} + \beta_{1i}\text{ses}_{ij} + e_{ij} \\
\beta_{0i} &= \gamma_{00} + \gamma_{01}\text{size}_{i} + \gamma_{02}\text{size}_{i} + \gamma_{03}\text{ses}_{i}\text{size}_{i} + u_{0i} \\
\beta_{1i} &= \gamma_{10} + \gamma_{11}\text{size}_{i} + u_{1i} \\
\text{math}_{ij} &= \gamma_{00} + \gamma_{10}\text{size}_{i} + \gamma_{01}\text{ses}_{ij} + \gamma_{02}\text{size}_{i} + \gamma_{03}\text{ses}_{i}\text{size}_{i} + u_{0i} + u_{1i}\text{ses}_{i} + e_{ij}
\end{align*}
\]

(28)

In this model, B1 is tested by examining γ_{11} and B2 is tested by examining γ_{03}.

Step 3: the model is estimated with LMS and/or RCP. We discuss the weaknesses and strengths of these methods in a previous section and in the Discussion. To show the flexibility of our approach, we fit the model in two ways: (a) both the B1 and B2 hypotheses are tested via LMS, and (b) B1 is tested via RCP and B2 via LMS. Path diagrams are in Figure 2 and results are in Table 2. It is notable that when model estimation is difficult, researchers may consider alternative methods such as Bayes estimation or even an observed-means approach (despite its potential bias). In our case, results correspond closely across models, with a positive and significant cross-level interaction of size and within-school ses, such that the W part of ses has a positive effect on math that is stronger for larger schools and weaker for smaller schools. The interaction of the B part of size and B part of ses was negative but nonsignificant.

Step 4: using output from the LMS/LMS model, interactions are plotted to show the conditional effects. In our case this is a significant cross-level interaction, with the conditional effects of ses on math at five conditional values of size: the minimum, maximum, and 25th, 50th, and 75th percentiles (100, 555, 1,026, 1,436, and 2,713; see Figure 3).

Step 5: although usually unnecessary, for illustrative purposes we also estimate the model with an observed-means approach, with results in the last column of Table 2. Unsurprisingly, the results based on observed cluster means show clear downward biases in the point-estimate of the B interaction effect and in the SE of the cross-level interaction effect.

For comparison, the usual practice for testing interactions in $2 \times (1 \rightarrow 1)$ designs is to estimate a model as:

\[
\begin{align*}
\text{math}_{ij} &= \beta_{0i} + \beta_{1i}\text{ses}_{ij} + e_{ij} \\
\beta_{0i} &= \gamma_{00} + \gamma_{01}\text{size}_{i} + \gamma_{02}\text{size}_{i} + \gamma_{03}\text{ses}_{i}\text{size}_{i} + u_{0i} \\
\beta_{1i} &= \gamma_{10} + \gamma_{11}\text{size}_{i} + u_{1i} \\
\text{math}_{ij} &= \gamma_{00} + \gamma_{10}\text{size}_{i} + \gamma_{01}\text{ses}_{ij} + \gamma_{02}\text{size}_{i} + \gamma_{03}\text{ses}_{i}\text{size}_{i} + u_{0i} + u_{1i}\text{ses}_{i} + e_{ij}
\end{align*}
\]

(28)
which conflates the possible B and cross-level interaction effects of ses and size, yielding the results in Table 3. The single interaction effect, while still significant, is a weighted average of the B1 and B2 interaction effects estimated in Equation 28. Alternatively, a single conffated interaction effect does not show that the magnitude and significance of that effect reflects moderation of the W effect (rather than the B effect) of size on math by the L2 variable size—showing why we call this approach “conflated.”

Discussion

This article treats RCP and LMS approaches to multilevel moderation in MSEM. Although our focus is methodological, our work has implications for theory development, which is done within the perceived limits of available methods. Current approaches to multilevel moderation are often tied to a single-level logic, making it difficult to tie multilevel theory to multilevel methods and produce theories and hypotheses that reflect the complexity and specificity of MSEM. Knowing the types of moderation that are possible (e.g., interactions involving the B or W parts of L1 variables) enables researchers to clearly articulate and test moderation in multilevel research.

In turn, there is a disturbing implication of our work: Because many studies of multilevel moderation use methods developed for single-level data, many moderation effects estimated with multilevel models may be “uninterpretable blends” of interactions involving W and B parts (Cronbach, 1976, p. 9.20). It is possible that many legitimate effects have escaped notice because L1 variables

Table 3
Results From Analyses of High School and Beyond Data: Conflated Multilevel Model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate (SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ses → math</td>
<td>1.852 (0.236)</td>
</tr>
<tr>
<td>size → math</td>
<td>-0.261 (0.308)</td>
</tr>
<tr>
<td>ses × size → math</td>
<td>0.492 (0.191)</td>
</tr>
<tr>
<td>intercept(math)</td>
<td>12.973 (4.425)</td>
</tr>
<tr>
<td>var(u_0)</td>
<td>4.804 (0.757)</td>
</tr>
<tr>
<td>var(u_i)</td>
<td>0.314 (0.221)</td>
</tr>
<tr>
<td>cov(u_0, u_i)</td>
<td>-0.102 (3.253)</td>
</tr>
<tr>
<td>var(e_ij)</td>
<td>36.829 (7.253)</td>
</tr>
</tbody>
</table>

Note. Numbers in parentheses are standard errors. Numbers in boldface are significant at α = .05. The random coefficient prediction (RCP) method was used.
and their effects were not separated into B and W parts. Researchers who fail to locate a significant interaction may have simply failed to separate cross-level interactions into statistically and practically significant W and B parts of opposite sign (similar to problems in multilevel mediation analysis; see Preacher et al., 2011, 2010). Alternatively, many studies that found cross-level interactions actually may have found a B interaction conflated with a small or absent cross-level interaction. The point is that prior research may have missed opportunities to uncover theoretically interesting interactions.

Our approach avoids such difficulties by clearly articulating multilevel moderation effects, estimating these effects, and interpreting them correctly. This is key because the implications of scientific findings involve policy and interventions which, targeted at the wrong level or unit of analysis, are less likely to have their intended effects. Although existing work emphasizes such thinking for multilevel direct and indirect effects (e.g., Preacher et al., 2010), decomposing multilevel moderation effects may be new to most researchers. We now treat several issues relevant to interpreting interactions as well as limitations and extensions of our work.

Interpreting Multilevel Moderation Effects

Moving from conflated effects to decomposed effects. Multilevel researchers often adopt an MLM strategy of starting with conflated W and B effects, and only later consider centering L1 predictors and including cluster means as predictors (a “conflated-first” strategy). We argue for the opposite strategy—starting with decomposed effects and theory regarding their potential equality (a “decomposed-first” strategy). MSEM proceeds in the latter way; the W and B parts of any L1 variable are automatically decomposed and researchers are motivated to theorize why they would explicitly constrain any effects to equality in order to obtain results comparable with those from traditional MLM with no centering or grand-mean centering.

This strategy has many benefits, such as bringing multilevel theory to the fore, making different effects across levels obvious, and allowing equality constraints on B and W effects so that models with decomposed L1 variables are similar to traditional MLM. A decomposed-first strategy using MSEM also allows the B effect of an L1 variable to be an unbiased estimate of the latent cluster-level component’s effect. Further, it is easy to test invariance in W and B effects because a model with them constrained to equality is parametrically nested in one with them freely estimated. By separating and freely estimating W and B effects, MSEM automatically produces an alternative model to which more constrained models can be compared. On the other hand, when the B part of a model is not of interest, MSEM makes it easy to allow all B variables to freely correlate, allowing a focus on only a model’s W part and its statistical fit. Level-specific main effects and interactions may not always be of interest to researchers, and in this case effects need not be decomposed. Yet, we argue that the potential for theoretically interesting, level-specific effects is overlooked by many researchers using the conflated-first strategy, and it deserves more attention in both the methodological and applied literatures.

Interpreting cross-level interactions. The benefits of a decomposed-first strategy are shown in the case of cross-level interactions, which are usually said to occur if L2 variables moderate the slope of L1 predictors. We suggest that L1 variables and effects should be decomposed into level-specific parts, and theory may suggest that either or both of the B and W effects of L1 variables are moderated, indicating how cross-level interactions are specified and interpreted (Cronbach & Webb, 1975; Cronbach & Snow, 1977, Chapter 4; Enders & Tofghi, 2007).

Consider the typical cross-level interaction in Equation 7, repeated here as:

\[y_{ij} = \gamma_{00} + \gamma_{10}x_{ij} + \gamma_{01}z_{ij} + \gamma_{11}x_{ij}z_{ij} + u_{0j} + u_{1j}x_{ij} + \epsilon_{ij} \] (30)

Here, the simple slope of \(y_{ij} \) regressed on \(x_{ij} \) is \((\gamma_{10} + \gamma_{11}z_{ij}) \), and only \(\gamma_{11} \) is an interaction effect. Yet, because \(x_{ij} \) has W and B parts, so does its slope, and thus so does its simple slope:

\[y_{ij} = \gamma_{00} + \gamma_{10}x_{ij} + \gamma_{01}z_{ij} + \gamma_{03}x_{ij}z_{ij} + \gamma_{10}x_{ij} + \gamma_{11}x_{ij}z_{ij} + u_{0j} + u_{1j}x_{ij} + \epsilon_{ij} \] (31)

In Equation 31, \(\gamma_{03} \) is a strictly B interaction because both \(x_{ij} \) and \(z_{ij} \) are B variables. Yet, \(\gamma_{11} \) is a truly cross-level interaction. Although the product \(x_{ij}z_{ij} \) varies at two levels, it does not explain any W variance in \(y_{ij} \) beyond that explained by \(x_{ij} \) (within a cluster, \(x_{ij} \) and \(x_{ij}z_{ij} \) correlate at 1). Thus, \(\gamma_{11} \) is the degree to which the slope relating two strictly W variables varies as a function of a strictly B variable. The traditional cross-level interaction in Equation 30 is only partially cross-level because it includes elements of a truly cross-level interaction and a strictly B interaction—emphasized by Cronbach and colleagues decades ago but mostly forgotten today. Researchers can test the equality of these interactions by constraining \(\gamma_{03} \) and \(\gamma_{11} \) to equality and testing fit, but these interactions are incommensurable because one is a change in a B effect (\(\gamma_{03} \)) and the other is a change in a W effect (\(\gamma_{11} \)). Thus, the decomposed-first strategy for cross-level interactions shows how the W and B effects of \(x_{ij} \) may be differently moderated.

Implementation Issues

When applying our MSEM approach there are various concerns to address. In order to develop and build models for multilevel moderation in MSEM, the usual sequence of model building in SEM and moderation testing still applies. In some situations researchers may begin with a “main effects only” model and then proceed to include interactions. If theory suggests moderation, researchers may begin with a model involving interactions. Precisely which interactions to include should depend on theory. Just as with multilevel mediation in MSEM (Preacher et al., 2010), researchers should check assumptions associated with their data and models, including any measurement properties of L1 scales at multiple levels of analysis (Geldhof, Preacher, & Zyphur, 2014). Also, work on model-building in single-level SEM has yet to be adequately generalized to the multilevel case, and future work should address this topic. Here, we discuss some new concerns that our approach creates in choosing between RCP and LMS, and how to tackle centering predictors, a central topic in MLM and moderation literature.

Choosing between RCP and LMS. As we note, RCP and LMS are not equally applicable to all types of multilevel moder-
ation. Strictly \(W \) interactions cannot be estimated with RCP, but
LMS allows this. Alternatively, RCP is suited for cross-level
interactions with random slopes because it was designed for this
purpose and researchers are familiar with it. Further, as we noted,
RCP can encounter bias, inefficiency, and convergence issues if
researchers use it for \(B \)-level interactions. As such, we recommend
RCP for cross-level interactions, where it performs well. On the
other hand, the performance of LMS (in terms of bias, coverage,
and Type I error control) declines under nonnormality for the
interacting predictors (Cham et al., 2012). Beyond these concerns,
the choice between RCP and LMS can be made to limit estimation
difficulty and computation time. Especially in complex models
that allow mixing the use of RCP and LMS for cross- and same-
level interactions, respectively, researchers may have to experiment
with their models to examine what works best for their specific
data.

In the future, computation difficulties will be reduced with
innovations in estimation, such as Monte Carlo integration or
Bayes estimation, the latter of which is possible for RCP in Mplus
but is not yet implemented for LMS. As always, software develop-
ments will allow a wider range of possible models and estima-
tors to reduce computation issues. Regardless of the forms such
advances take, the decomposition-based MSEM approach outlined
here will apply.

Centering. A key question in multilevel modeling is whether
to group- or grand-mean center L1 variables (e.g., Enders
& Tofghi, 2007; Raudenbush & Bryk, 2002). Literature on mod-
eration often advocates grand-mean centering predictors and mod-
erators (e.g., Aiken & West, 1991; Cronbach & Snow, 1977).
Multilevel moderation tests are at the intersection of these two
literatures, so centering decisions have important implications.

In MLM, group-mean centering L1 predictors eliminates their \(B \)
parts, leaving only their \(W \) parts, but MSEM automatically de-
composes L1 variables, so this is a nonissue. In MSEM, grand-
mean centering will give similar results to raw scores except in one
case. When a random slope for a \(W \) effect is regressed on a
predictor (either a L1 variable’s \(B \) part or an observed L2 variable),
the intercept of the random slope is adjusted by the mean of the
moderator. Thus, the random slope’s intercept is the \(W \) effect
with the moderator set to 0. Centering the moderator changes
the random slope’s intercept, and thus the interpretation of the
L1 predictor’s conditional main effect. Grand-mean centering
or using raw scores does not affect results, but the potential to
misinterpret the mean of a random slope as a \(W \) effect should be
kept in mind.

Limitations

A major advantage of MSEM is that it allows treating the \(B \) part
of L1 variables as latent, removing bias caused by using cluster
means at \(L2 \) (Lüdtke et al., 2008; Marsh et al., 2009). Also, with
MSEM, all types of multilevel moderation can be embedded in
more complex models, such as mixture models (e.g., Muthén
& Asparouhov, 2009; Sterba & Bauer, 2014), mediation models (e.g.,
Preacher et al., 2010), and models with multiple-indicator latent
variables. Yet, the potential for such complex models hints at a
limitation of MSEM: convergence issues and computation
times. Advances in estimation and computing power will solve
some of these, but the problems are difficult to overcome

Potential Extensions

Our work serves as a basis for testing conditional indirect effects
with multilevel data, or multilevel moderated mediation, which
exists when indirect effects are functions of moderators (Edwards
& Lambart, 2007; Hayes, 2013; Muller, Judd, & Yzerbyt, 2005;
Preacher, Rucker, & Hayes, 2007). Such effects in multilevel
designs have yet to receive serious attention, with only two articles
addressing the topic. Bauer, Preacher, and Gil (2006) present a
method for examining a special case: when a conflated indirect
effect is moderated by an \(L2 \) moderator. Ryu (2015) considers
MSEM for moderated mediation, but uses Muthén’s (1990) ap-
proach, requiring complete data and balanced cluster sizes with no
random slopes or cross-level interactions. Our approach does not
have these limitations and allows the \(W \) and \(B \) effects of L1
variables to be conditional on moderators assessed at any level.
If such moderated effects or even random slopes participate in longer
causal chains (i.e., indirect effects), then level-specific or cross-
level moderated mediation exists. Moderation of multilevel medi-
atation combines our logic with that of Preacher et al. (2011, 2010),
which in turn is a generalization of work by Edwards and Lambart
(2007) and Preacher et al. (2007) to MSEM in the \(B \), \(W \), and
cross-level cases.

MSEM also allows higher-order interactions and additional lev-
els of analysis. With LMS, higher-order (e.g., 3-way) interactions
require multiplying the result of a latent interaction by a modera-
tor, creating a higher-order term that can be used to estimate
interactions. Such models, as well as those we treat here, can be
easily extended to three-level data. We do not discuss these models
here, but there is no theoretical impediment to specifying them. As
above, researchers simply need to focus on appropriately decom-
posing observed variables into level-specific parts.

In sum, given the generality of MSEM there are many other
potential variations on the models we treat. We cannot discuss all
possibilities, but we do emphasize a feature of MSEM that over-
comes a key shortcoming of MLM: traditional MLM limits re-
searchers to investigating outcomes at \(L1 \), but MSEM allows \(L1 \) or
\(L2 \) variables as outcomes (Muthén & Asparouhov, 2009; Preacher
et al., 2010). Indeed, \(L2 \) outcomes with interaction effects are
simple to specify in MSEM by treating an \(L2 \) outcome as an
element of the \(y_{ij} \) vector (in Equation 12) for which only the \(B \)
terms would be specified (in Equation 14). This allows tests of
moderation in designs such as \(1 \times (1 \to 2), 1 \times (2 \to 2), \) and \(2 \times

11 Mplus currently tests moderation in three-level models using only
RCP and the Bayes estimator, implying that interactions among \(W \) latent
components of L1 variables are currently infeasible in three-level designs.
(1 → 2).\(^2\) With an L2 outcome, all effects are necessarily B effects, restricting moderation types to those involving observed or latent B components.

Conclusion

In this article we have (a) clarified how current methods for assessing multilevel moderation can result in biased or misleading results; (b) provided methods that yield appropriate and interpretable results for different types of multilevel moderation; and (c) encouraged the implementation and use of stable, efficient estimators capable of fitting such models. Our hope is that our contributions will spur further research in these areas.

\(^2\) \((2 \rightarrow 2)\) designs ordinarily would be treated using single-level analysis, unless the model includes covariates measured at a lower or higher level.

References

approaches for the analysis of latent nonlinear effects. *Methodology, 4*, 51–66. http://dx.doi.org/10.1027/1614-2241.4.2.51

Received January 11, 2014

Revision received May 7, 2015
Accepted June 16, 2015 ■