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A central problem in the application of exploratory factor analysis is deciding how

many factors to retain (m). Although this is inherently a model selection problem, a

model selection perspective is rarely adopted for this task. We suggest that Cudeck

and Henly’s (1991) framework can be applied to guide the selection process.

Researchers must first identify the analytic goal: identifying the (approximately)

correct m or identifying the most replicable m. Second, researchers must choose fit

indices that are most congruent with their goal. Consistent with theory, a simulation

study showed that different fit indices are best suited to different goals. Moreover,

model selection with one goal in mind (e.g., identifying the approximately correct

m) will not necessarily lead to the same number of factors as model selection with

the other goal in mind (e.g., identifying the most replicable m). We recommend

that researchers more thoroughly consider what they mean by “the right number

of factors” before they choose fit indices.
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MODEL SELECTION IN FACTOR ANALYSIS 29

Exploratory factor analysis (EFA) is a method of determining the number and

nature of unobserved latent variables that can be used to explain the shared

variability in a set of observed indicators, and is one of the most valuable

methods in the statistical toolbox of social science. A recurring problem in the

practice of EFA is that of deciding how many factors to retain. Numerous prior

studies have shown that retaining too few or too many factors can have dire

consequences for the interpretation and stability of factor patterns, so choosing

the optimal number of factors has, historically, represented a crucially important

decision. The number-of-factors problem has been described as “one of the

thorniest problems a researcher faces” (Hubbard & Allen, 1989, p. 155) and

as “likely to be the most important decision a researcher will make” (Zwick &

Velicer, 1986, p. 432). Curiously, although this is inherently a model selection

problem, a model selection perspective is rarely adopted for this task.

Model selection is the practice of selecting from among a set of competing

theoretical explanations the model that best balances the desirable characteristics

of parsimony and fit to observed data (Myung & Pitt, 1998). Our threefold

goals are to (a) suggest that a model selection approach be taken with respect to

determining the number of factors, (b) suggest a theoretical framework to help

guide the decision process, and (c) contrast the performance of several competing

criteria for choosing the optimal number of factors within this framework.

First, we offer a brief overview of EFA and orient the reader to the nature

of the problem of selecting the optimal number of factors. Next, we describe

several key issues critical to the process of model selection. We employ a

theoretical framework suggested by Cudeck and Henly (1991) to organize issues

relevant to the decision process. Finally, we provide demonstrations (in the

form of simulation studies and application to real data) to highlight how model

selection can be used to choose the number of factors. Most important, we

make the case that identifying the approximately correct number of factors and

identifying the most replicable number of factors represent separate goals, often

with different answers, but that both goals are worthy of, and amenable to,

pursuit.

OVERVIEW OF EXPLORATORY FACTOR ANALYSIS

The Common Factor Model

In EFA, the common factor model is used to represent observed measured

variables (MVs) as functions of model parameters and unobserved factors or

latent variables (LVs). The model for raw data is defined as follows:

x D ƒŸ C •; (1)
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30 PREACHER, ZHANG, KIM, MELS

where x is a p�1 vector containing data from a typical individual on p variables,

ƒ is a p � m matrix of factor loadings relating the p variables to m factors, Ÿ

is an m � 1 vector of latent variables, and • is a p � 1 vector of person-specific

scores on unique factors. The • are assumed to be mutually uncorrelated and

uncorrelated with Ÿ. The covariance structure implied by Equation (1) is as

follows:

† D ƒˆƒ0 C ‰; (2)

where † is a p � p population covariance matrix, ƒ is as defined earlier, ˆ

is a symmetric matrix of factor variances and covariances, and ‰ is a diagonal

matrix of unique factor variances. Parameters in ƒ, ˆ, and ‰ are estimated

using information in observed data. The factor loadings in ƒ are usually of

primary interest. However, they are not uniquely identified, so the researcher will

usually select the solution for ƒ that maximizes some criterion of interpretability.

The pattern of high and low factor loadings in this transformed (or rotated) ƒ

identifies groups of variables that are related or that depend on the same common

factors.

A Critical but Subjective Decision in Factor Analysis

In most applications of EFA, of primary interest to the analyst are the m

common factors that account for most of the observed covariation in a data

set. Determination of the number and nature of these factors is the primary

motivation for conducting EFA. Therefore, probably the most critical subjective

decision in factor analysis is the number of factors to retain (i.e., identifying

the dimension of ƒ), the primary focus of this article. We now expand on this

issue.

SELECTING THE OPTIMAL NUMBER OF FACTORS

Although the phrase is used frequently, finding the “correct” or “true” number

of factors is an unfortunate choice of words. The assumption that there exists a

correct, finite number of factors implies that the common factor model has

the potential to perfectly describe the population factor structure. However,

many methodologists (Bentler & Mooijaart, 1989; Cattell, 1966; Cudeck, 1991;

Cudeck & Henly, 1991; MacCallum, 2003; MacCallum & Tucker, 1991; Meehl,

1990) argue that in most circumstances there is no true operating model, re-

gardless of how much the analyst would like to believe such is the case.

The hypothetically true model would likely be infinitely complex and would

completely capture the data-generating process only at the instant at which

D
ow

nl
oa

de
d 

by
 [

V
U

L
 V

an
de

rb
ilt

 U
ni

ve
rs

ity
] 

at
 1

6:
24

 2
9 

M
ar

ch
 2

01
3 



MODEL SELECTION IN FACTOR ANALYSIS 31

the data are recorded. MacCallum, Browne, and Cai (2007) further observe

that distributional assumptions are virtually always violated, the relationships

between items and factors are rarely linear, and factor loadings are rarely (if ever)

exactly invariant across individuals. By implication, all models are misspecified,

so the best we can expect from a model is that it provide an approximation

to the data-generating process that is close enough to be useful (Box, 1976).

We agree with Cudeck and Henly (2003) when they state, “If guessing the

true model is the goal of data analysis, the exercise is a failure at the outset”

(p. 380).

Given the perspective that there is no true model, the search for the correct

number of factors in EFA would seem to be a pointless undertaking. First,

if the common factor model is correct in a given setting, it can be argued

that the correct number of factors is at least much larger than the number

of variables (Cattell, 1966) and likely infinite (Humphreys, 1964). For this

reason, Cattell (1966) emphasized that the analyst should consider not the

correct number of factors but rather the number of factors that are worthwhile

to retain. A second plausible argument is that there exists a finite number

of factors (i.e., a true model) but that this number is ultimately unknowable

by psychologists because samples are finite and models inherently lack the

particular combination of complexity and specificity necessary to discover them.

A third perspective is that the question of whether or not there exists a “true

model” is inconsequential because the primary goals of modeling are description

and prediction. Discovering the true model, and therefore the “correct” m, is

unnecessary in service of this third stated goal as long as the retained factors

are adequate for descriptive or predictive purposes.

Given this variety of perspectives, none of which is optimistic about finding

a true m, one might reasonably ask if it is worth the effort to search for the

correct number of factors. We think the search is a worthwhile undertaking, but

the problem as it is usually stated is ill posed. A better question regards not the

true number of factors but rather the optimal number of factors to retain. By

optimal we mean the best number of factors to retain in order to satisfy a given

criterion in service of meeting some explicitly stated scientific goal. One example

of a scientific goal is identifying the model with the highest verisimilitude,

or proximity to the objective truth (Meehl, 1990; Popper, 1959). This goal

stresses accuracy in explanation as the overriding concern while recognizing

that no model can ever fully capture the complexities of the data-generating

process. On the other hand, in many contexts it is more worthwhile to search

for a model that stresses generalizability, or the ability to cross-validate well

to data arising from the same underlying process (Cudeck & Henly, 1991;

Myung, 2000; Pitt & Myung, 2002). This goal stresses prediction or replicability

as fundamentally important. The correct model, in the unlikely event that it

really exists and can be discovered, is of little use if it does not generalize
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32 PREACHER, ZHANG, KIM, MELS

to future data or other samples (Everett, 1983; Fabrigar, Wegener, MacCallum,

& Strahan, 1999; Thompson, 1994). A generalizable model, even if it does

not completely capture the actual data-generating process, can nevertheless be

useful in practice.1 In fact, in some contexts, such as the construction of college

admissions instruments or career counseling, the primary purpose of model

construction concerns selection or prediction, and verisimilitude is of secondary

concern.

We consider it safe to claim that the motivation behind most modeling is some

combination of maximizing verisimilitude and maximizing generalizability. The

search for the optimal number of factors in EFA can be conducted in a way

consistent with each of these goals. To meet the first goal, that of maximizing

verisimilitude, the optimal number of factors is that which provides the most

accurate summary of the factor structure underlying the population of inference

(Burnham & Anderson, 2004, term this best approximating model quasi-true,

a term we adopt here). That is, we seek to identify an m such that the model

fits at least reasonably well with m factors, substantially worse with m � 1

factors, and does not fit substantially better with m C 1 factors. To meet the

goal of maximizing generalizability, the optimal number of factors is that which

provides the least error of prediction upon application to future (or parallel)

samples. That is, we seek the model that demonstrates the best cross-validation

upon being fit to a new sample from the same population. Happily, regardless

of the scientist’s goal, the logic of model selection may be used to guide the

choices involved in EFA.

ADOPTING A MODEL SELECTION PERSPECTIVE

Model Selection

We submit that the search for the optimal number of factors should be ap-

proached as a model selection problem guided by theory. The role of theory in

this process should be to determine, a priori, a set of plausible candidate models

(i.e., values of m) that will be compared using observed data. Often, different

theories posit different numbers of factors to account for observed phenomena,

for example, three-factor versus five-factor theories of personality (Costa &

McCrae, 1992; Eysenck, 1991). Even when theory provides little explicit help

in choosing reasonable values for m, scientists rarely use EFA without some

prior idea of the range of values of m it is plausible to entertain.

1Famous examples of incorrect but useful models are Newtonian physics and the Copernican

theory of planetary motion.
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MODEL SELECTION IN FACTOR ANALYSIS 33

Earlier we defined model selection as the practice of selecting from among a

set of competing theoretical explanations the model that best balances the desir-

able characteristics of parsimony and fit to observed data (Myung & Pitt, 1998).

The rival models traditionally are compared using objective model selection

criteria (Sclove, 1987). We collectively refer to criteria for choosing m as factor

retention criteria (FRCs). An FRC or combination of FRCs can be used to select

one model as the optimal model, more than one model if some models cannot

be distinguished empirically, or no model if none of the competing models

provides an adequate representation of the data. This process represents strong

inference in the best scientific tradition (Platt, 1964), but focusing on model fit

to the exclusion of all else carries with it the implicit assumption that all of the

models to be compared are equally antecedently falsifiable. This assumption, as

we now explain, is typically unwarranted in practice.

Model Complexity and Generalizability

Falsifiability is the potential for a model to be refuted on the basis of empirical

evidence. In our experience, falsifiability tends to be viewed by researchers as a

dichotomy, but it is more accurate to think of falsifiability as a continuum—some

models are more falsifiable than others. Fundamental to understanding relative

falsifiability is the concept of model complexity.2 Complexity is the ability of

a model, all things being equal, to fit diverse or arbitrary data patterns (Dunn,

2000; MacCallum, 2003; Myung, 2000; Pitt & Myung, 2002). In other words,

complexity is a model’s a priori data-fitting capacity and is largely independent

of substantive theory. Complexity can also be understood as the complement to

a model’s falsifiability or parsimony. Models with relatively greater complexity

are less falsifiable and therefore less desirable from the perspective of parsimony.

When comparing factor models using the same sample size and estimation

algorithm, the primary features determining differences in complexity are the

number of parameters and the redundancy among parameters.

Good fit to empirical data traditionally has been taken as supportive of a

model. In fact, good fit is a necessary but not sufficient condition for preferring

a model in model selection (Myung, 2000). There is a growing appreciation in

psychology that good fit alone is of limited utility if a model is overcomplex

2Model complexity is not to be confused with factor complexity, which is the number of factors

for which a particular MV serves as an indicator (Bollen, 1989; Browne, 2001; Comrey & Lee,

1992; Thurstone, 1947; Wolfle, 1940). Our definition of complexity mirrors that commonly used in

the mathematical modeling literature and other fields and is different from the restrictive definition

sometimes seen in the factor-analytic literature in reference to a model’s degrees of freedom (Mulaik,

2001; Mulaik et al., 1989). Model complexity and fitting propensity (Preacher, 2006) are identical

concepts.
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34 PREACHER, ZHANG, KIM, MELS

(Browne & Cudeck, 1992; Collyer, 1985; Cutting, 2000; Cutting, Bruno, Brady,

& Moore, 1992; Pitt, Myung, & Zhang, 2002; Roberts & Pashler, 2000). Models

with relatively higher complexity than rival models have an advantage in terms

of fit, such that we typically do not know how much of the good fit of a complex

model can be attributed to versimilitude and how much should be attributed to

the model’s baseline ability to fit any arbitrary data. The good fit of a complex

model can result from properties of the model unrelated to its approximation

to the truth (such models are said to overfit the data). Consequently, it is the

opinion of many methodologists that researchers should avoid using good fit

as the only model selection criterion and also consider generalizability; that is,

researchers should prefer models that can fit future data arising from the same

underlying process over those that fit a given data set well (Leahy, 1994; Pitt

et al., 2002). As theoretically derived models intended to account for regularity

in observed data, optimal EFA models should therefore balance good fit with

parsimony. If a given factor model is complex relative to competing models,

interpretation of good fit should be tempered by an understanding of how well

the model is expected to fit any data.

FRAMEWORK AND HYPOTHESES

It is a commonly held belief that the model that generalizes the best to future

samples is also the one closest to the truth. Accumulating evidence suggests

that this is not necessarily so, at least at sample sizes likely to be encountered

in psychological research. To explore this claim and lay a groundwork for

the demonstrations provided later, we make use of a framework developed by

Cudeck and Henly (1991) and based on pioneering work by Linhart and Zucchini

(1986).3 In Cudeck and Henly’s (1991) framework, sample discrepancy (SD)

refers to the discrepancy between observed data (S) and a model’s predictions

( O†). Overall discrepancy (OD) refers to the difference between the population

covariance matrix (†0/ and O†. Discrepancy due to approximation (DA), or

model error, is the discrepancy between †0 and the model’s predictions in the

population ( Q†0). For a given model, DA is a fixed but unobservable quantity

because researchers fit models to samples rather than to populations. Finally,

discrepancy due to estimation (DE) represents sampling variability. In general,

OD D DA C DE C o.N �1/, where o.N �1/ becomes negligibly small as N

increases (Browne, 2000; Browne & Cudeck, 1992 [Appendix]; Cudeck &

Henly, 1991; Myung & Pitt, 1998).

3The framework of Cudeck and Henly (1991) finds a close parallel in the framework presented

by MacCallum and Tucker (1991) to identify sources of error in EFA.
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MODEL SELECTION IN FACTOR ANALYSIS 35

FIGURE 1 †0: Population covariance matrix; S: Sample covariance matrix; Q†0: Estimate

of †0 under model in the population; O†: Estimate of †0 in the sample; DA: Discrepancy

due to approximation; OD: Overall discrepancy; DE: Discrepancy due to estimation; SD:

Sample discrepancy.

The four types of discrepancy are depicted in Figure 1, adapted from Cudeck

and Henly (1991). As sample size increases, DE decreases. At the limit, S D †0

and O† D Q†0, and thus OD D DA. Because samples are always finite and the

true model is never in the pool of rival models under consideration, OD >

DA > 0.

The diagrams in Figure 1 can be used to illustrate some of the key con-

cepts presented earlier when we discussed model selection. For example, SD

represents the lack of fit observed in the sample. One way to quantify SD is

by using the minimized maximum likelihood (ML) discrepancy function value

. OFML/. The complement to SD is thus goodness of fit uncorrected for complexity.

The complement to DA is essentially equivalent to verisimilitude. Therefore,

minimizing DA, which can be likened to compressing the diagram in Figure 1

horizontally, also maximizes verisimilitude. The complement to OD is equivalent

in spirit to generalizability; the more generalizable a model is, the lower the

overall discrepancy will be. Therefore, minimizing OD amounts to maximizing
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36 PREACHER, ZHANG, KIM, MELS

generalizability.4 DE is rarely of direct interest by itself, but it has an impact on

OD. Especially when N is small, adding parameters to a model will decrease DA

but increase DE, having opposing effects on OD (Browne & Cudeck, 1992). Ob-

taining larger samples can be likened to compressing the diagram vertically, re-

ducing DE closer to zero (Myung & Pitt, 1998), as in the lower panel of Figure 1.

Reduction of DE also makes DA and OD draw closer in magnitude. Verisimili-

tude and generalizability, therefore, are asymptotically equivalent; at very large

sample sizes, the model with the highest verisimilitude is often the model that

generalizes the best, and vice versa (Browne, 2000). In more realistic situations

with small sample sizes, some criteria select models with high verisimilitude

and others select models with high generalizability (Bandalos, 1997).

In the statistical learning literature, generalization error is defined as the

expected sample discrepancy, which is decomposed into estimation error and

approximation error. Generalization error is equivalent to OD in Cudeck and

Henly’s (1991) framework. It is known that when a model becomes more

complex, the approximation error becomes smaller but estimation error becomes

larger; this is termed the bias-variance trade-off (e.g., Heskes, 1998). The

reason the estimation error becomes larger as a model becomes more complex

may be understood in the following way: As a factor model becomes more

complex (i.e., as more factors are added), more parameters need to be estimated

using the same amount of data. Estimating more parameters while holding

the amount of data constant reduces the overall precision of estimation. Thus,

more complex models cannot be estimated as precisely as simpler models, and

this phenomenon increases as sample size decreases. To make a model more

generalizable (less variable over repeated sampling), a balance needs to be struck

between complexity and SD.

Using Cudeck and Henly’s (1991) framework, the simplest model fit indices

(e.g., root mean square residual [RMSR] and ¦2) can be best understood as

measures of SD because they are based directly on the difference between S

and O†. But minimizing SD is likely to be of less interest to the researcher than

minimizing DA or OD. Even though ¦2 is used to test the null hypothesis that

DA D 0, ¦2 and RMSR only indirectly reflect DA and OD because typically

S ¤ †0 and O† ¤ Q†0. Any fit index or selection criterion that emphasizes

cross-validation or replicability can be thought of as a measure of OD and can

4MacCallum (2003) noted that OD should be regarded as an aspect or facet of verisimilitude.

We consider OD more closely related to generalizability, which represents a model’s balance of

fit and complexity. It is possible for a model to have high verisimilitude and low generalizability

(this situation frequently occurs when models are fit to small samples, as in the top right panel of

Figure 1), but it is rare to find models with low verisimilitude and high generalizability. Because

OD � DA C DE we regard verisimilitude as an aspect of OD, not the reverse, and we consider

verisimilitude a fixed quantity that is independent of sampling.
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MODEL SELECTION IN FACTOR ANALYSIS 37

be used to rank models in terms of OD or generalizability. Because OD � DA

in large samples, measures of OD and DA can be regarded as measuring the

same quantity with decreasing bias as N increases.

CRITERIA FOR SELECTING m

We now provide an overview of some methods of choosing an appropriate m.

Three different types of criteria are widely used in factor analysis literature:

criteria based on eigenvalues, criteria based on discrepancy of approximation

(reflecting verisimilitude), and criteria based on overall discrepancy (reflecting

generalizability). We do not consider eigenvalue-based criteria here as they are

less well motivated theoretically and do not fit easily within Cudeck and Henly’s

(1991) theoretical framework.

Criteria Based on Discrepancy Due to Approximation

Several criteria based on the discrepancy due to approximation (DA) are used as

measures of model fit. Two of these include the estimated population discrepancy

function .F0/ and estimated noncentrality parameter .nF0/, where n D N � 1.

However, F0 and nF0 are not applicable to model selection when generalizability

is the goal because these values decrease as a model becomes more complex.

RMSEA. The root mean square error of approximation (RMSEA; Browne

& Cudeck, 1992; Steiger & Lind, 1980) has been suggested as a factor retention

criterion. RMSEA can be regarded as an estimate of model misfit per degree of

freedom in the population. A sample point estimate of RMSEA is as follows:

RMSEA D

v

u

u

tmax

( 

OFML

df
�

1

n

!

; 0

)

; (3)

where OFML is the minimized ML discrepancy function value and df represents

degrees of freedom. Division by df represents an adjustment for complexity in

terms of the number of free parameters; that is, RMSEA penalizes models with

more than the necessary number of factors. RMSEA is widely regarded as a

measure of DA (Browne & Cudeck, 1992; Cudeck & Henly, 2003; MacCallum,

2003). As such, it should perform better than other criteria when the goal is to

maximize verisimilitude. In the present study, the smallest value of m for which

the RMSEA drops below .05 is selected as the most appropriate.
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38 PREACHER, ZHANG, KIM, MELS

An advantage of RMSEA is that a confidence interval is easily obtained for

it, with bounds

CI D

0

@

s

OœL

df � n
I

s

OœU

df � n

1

A ; (4)

where OœL and OœU are found by identifying the appropriate quantiles under

the noncentral ¦2 distribution in question (Browne & Cudeck, 1992). This

confidence interval, in turn, may be used to test hypotheses of close fit rather

than the more restrictive (and untenable) hypothesis of exact fit tested with the

likelihood ratio test. The choice of .05 as an informal criterion for close fit is

based on popular guidelines (Browne & Cudeck, 1992) and is close to the .06

value recommended by Hu and Bentler (1999) based on large-scale simulations.

We performed a separate selection procedure using the RMSEA: the smallest

value of m for which the lower bound of the RMSEA 90% confidence interval

drops below .05 was chosen as the retained number of factors. Although rigid

adherence to conventional benchmarks is not universally recommended, the use

of this procedure in the present context is consistent with choosing the smallest

m for which the test of close fit is not rejected (Browne & Cudeck, 1992;

MacCallum, Browne, & Sugawara, 1996). We term this criterion RMSEA.LB

to distinguish it from RMSEA.

Criteria Based on Overall Discrepancy

Criteria based on overall discrepancy (OD) are indices designed to select the

simplest model from a pool of rival models that most accurately describes

observed data. All information criteria include a term representing lack of fit

and a penalty term for complexity. Many information-based criteria are of the

following form:

�2fk C a � qk ; (5)

where fk is the log-likelihood associated with the model indexed by k, qk is

the number of free parameters in model k, and a is a function of sample size

(Sclove, 1987). These criteria can be used to rank models in terms of OD. If the

goal is to identify the model that maximizes generalizability, such indices may

perform well.

AIC and BIC. Two popular criteria conforming to Equation (5) are (an)

Akaike’s information criterion (AIC; Akaike, 1973) and the Bayesian informa-

tion criterion (BIC; Schwarz, 1978). For AIC, a is simply 2, whereas for BIC,

a D ln.N /. Because BIC imposes a stiffer complexity penalty than AIC for
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MODEL SELECTION IN FACTOR ANALYSIS 39

N � 8, BIC generally results in the selection of models with fewer parameters

than does AIC. AIC has been shown to perform well at selecting the true number

of factors when it exists (e.g., Akaike, 1987; Bozdogan & Ramirez, 1987; Song

& Belin, 2008), but only at small N. BIC has been found to outperform AIC in

recovering the true m (e.g., Lopes & West, 2004; Song & Belin, 2008).

AIC selects more complex models as N increases because the rate of increase

in the badness of fit term increases with N, but the penalty term stays the

same (Bozdogan, 2000). This has been the basis of some questions about

the appropriateness of AIC for model selection (Ichikawa, 1988; McDonald

& Marsh, 1990; Mulaik, 2001). This tendency of AIC appears problematic

perhaps because AIC was designed with the goal of generalizability in mind

(i.e., minimizing OD), yet researchers tend to use it in pursuit of verisimilitude

(i.e., minimizing DA). Because OD � DA C DE, and DE reflects sampling

variability, it should come as no surprise that N affects model selection using

indices like AIC and BIC (Cudeck & Henly, 1991). When N is small, indices like

AIC and BIC will indicate a preference for simpler models. This phenomenon

is consistent with the earlier mentioned point that when N is small there is a

loss of precision in estimating parameters in more complex models.

A procedure closely related to ranking models by AIC or BIC is ranking

models in order of their ability to cross-validate in new data. Cross-validation

is the practice of estimating model parameters in a calibration sample and then

examining the fit of a fully constrained model in a validation sample, where all

parameters in the fully constrained model are fixed to the values estimated in

the calibration sample (i.e., Bentler’s [1980] tight replication strategy). Good fit

to the validation sample is taken as evidence of good predictive validity. Cross-

validation has received considerable support as a general strategy for selecting

the most appropriate model from a pool of alternatives in covariance structure

modeling, of which factor analysis is a special case (De Gooijer, 1995). The

reason we mention it here is that AIC can be regarded as a single-sample

estimate of an expected cross-validation criterion. The expected cross-validation

index (ECVI; Browne & Cudeck, 1992), which is equivalent to AIC when

ML estimation is used, is known to select more complex models at higher

Ns (Browne, 2000; Browne & Cudeck, 1992; Cudeck & Henly, 1991). This is

to be expected because indices based on the logic of cross-validation are not

intended to select a correct model but rather to select a model that will yield

trustworthy replication at a given N.

SUMMARY AND HYPOTHESES

To summarize, factor models (indeed, all models) are only convenient approxi-

mations constructed to aid understanding; there is no such thing as a true factor
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40 PREACHER, ZHANG, KIM, MELS

model. However, out of a pool of rival explanations, one may be said to lie closest

to the data-generating process (the quasi-true model). It is reasonable to try to

identify the model with the highest relative verisimilitude because one of the

primary aims of science is to identify and understand processes that give rise to

observed data. However, even models with seemingly high verisimilitude are not

useful unless they cross-validate well in new data. Particularly in small samples,

researchers often do not have enough information to support the retention of

many factors. Therefore, we believe that identifying the model that maximizes

generalizability is a reasonable alternative (or additional) goal for researchers

to pursue. Having presented our guiding theoretical framework and having

described several FRCs, we are now in a position to make predictions about

the performance of specific FRCs in service of these dual goals.

Hypothesis 1

We have likened DA to verisimilitude. Given that verisimilitude is of great

interest to researchers, it would be useful to identify the FRC that most accurately

reflects a model’s proximity to the truth, or minimizes model error. As we have

described, the root mean square error of approximation (RMSEA) is a measure

of DA, corrected for complexity by dividing by degrees of freedom (Browne

& Cudeck, 1992; Cudeck & Henly, 1991; Steiger & Lind, 1980). Of all the

FRCs we have encountered, RMSEA and RMSEA.LB are the ones most likely

to accurately rank rival models in terms of versimilitude (DA). Other FRCs that

employ a correction for complexity approximate OD rather than DA and thus

should perform less well in finite samples when the goal is to identify the model

most similar to the data-generating process. We further note that sample size

should have little effect on DA (MacCallum, 2003) because it is a population

quantity. However, there is evidence that RMSEA is positively biased when

N < 200 and the model is well specified (see Curran, Bollen, Chen, Paxton, &

Kirby, 2003, for a good discussion of this phenomenon). This finding leads to

the expectation that RMSEA will overfactor somewhat for the smaller Ns we

investigate.

Hypothesis 2

We hypothesize that information criteria (AIC or BIC) will be good indicators

of generalizability. A guiding principle behind information criteria is that good

absolute fit to a particular data set is not by itself of central importance. Often

the analyst is interested in a model’s generalizability, or ability to predict future

data arising from the same underlying process. Theoretically, all generalizability

indices include adjustments for model complexity and can be used to rank
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MODEL SELECTION IN FACTOR ANALYSIS 41

competing models in terms of OD. Many indices penalize fit for complexity, but

some employ better corrections than others. AIC and BIC should be superior

to RMSEA and RMSEA.LB in selecting the most generalizable model because

they consider all of the factors known to limit generalizability. Of the FRCs we

consider, AIC and BIC are more likely to accurately rank models in terms of

generalizability (OD) because their corrections for model complexity are well

grounded in theory. We have no prediction about which of the two (AIC or BIC)

will emerge as superior.

ILLUSTRATIVE DEMONSTRATIONS

We now present three demonstrations to illustrate that verisimilitude and gen-

eralizability are separate ideas and to determine the best criteria to use for

each goal. Fabrigar et al. (1999) expressed a need for studies such as these.

In the first demonstration, we determine what FRC is the most successful in

identifying the known data-generating model with the expectation that RMSEA

and RMSEA.LB would show superior performance (Hypothesis 1). In the second

demonstration, we determine the best FRC to use when the goal is to select

the model best able to generalize to new data arising from the same underlying

process with the expectation that information criteria would outperform RMSEA

and RMSEA.LB (Hypothesis 2). In the third demonstration we apply the various

FRCs to empirical data drawn from Jessor and Jessor’s (1991) Socialization of

Problem Behavior in Youth, 1969–1981 study.

Demonstration 1: Maximizing Verisimilitude

In order to investigate the relative abilities of FRCs to recover the quasi-true

data-generating factor model, we simulated large numbers of sample correlation

matrices from population correlation matrices that approximately satisfy a factor

analysis model. We used a procedure (Yuan & Hayashi, 2003) that produces

population correlation matrices with arbitrary RMSEAs. It can be described as

a two-stage procedure. Population correlation matrices approximately satisfying

the model are generated first; these population correlation matrices are then

transformed to correlation matrices with arbitrary RMSEAs. A property of this

two-stage procedure is that the transformation at the second stage does not

change the parameter values.

In the first stage, using Fortran, we generated population correlation matrices

using a method described by Tucker, Koopman, and Linn (1969). Manifest vari-

ables are linear combinations of three types of latent variables: major common

factors, minor common factors, and unique factors. Minor common factors are

considered in the generation of population correlation matrices so that these
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42 PREACHER, ZHANG, KIM, MELS

correlation matrices approximately satisfy a factor analysis model. For each set

of three different numbers of variables (p D 9, 12, 15), population correlation

matrices with different numbers of factors were generated. The number of

factors was varied from 1 to p/3, which were 3, 4, and 5 for p D 9, 12, and

15, respectively. Major common factors contribute 60% of manifest variable

variances in all conditions. These correlation matrices involve different levels of

model error, however.

In the second stage, again using Fortran, we scaled population correlation

matrices generated in the first stage so that the population RMSEAs from

fitting the EFA model to the scaled population correlation matrices are all

.05. Population correlation matrices generated in the first stage were partitioned

into two parts: the model implied correlation matrix and the residual matrix.

A population correlation matrix with an arbitrary RMSEA can be obtained

by adding a properly scaled residual matrix to the model implied correlation

matrix. This two-stage procedure was repeated 1,000 times within each cell of

the design, yielding 12,000 population matrices.

Sample correlation matrices were generated from these population matrices

using a method described by Wijsman (1959) and implemented in Fortran.

Sample size was manipulated to correspond to a range of values typically seen

in applied research (N D 100, 500, 1,000, 3,000). All factor models were fit

to generated matrices using ML as implemented in the factor analysis software

CEFA 3.04 (Browne, Cudeck, Tateneni, & Mels, 2008). By applying four FRCs

(RMSEA, RMSEA.LB, AIC, and BIC), the optimal number of factors was

selected for each correlation matrix. Because selection of the quasi-true data-

generating model was the only criterion for success in this demonstration, factor

solutions were not rotated. Of primary interest was whether or not RMSEA and

RMSEA.LB would prove to be better FRCs than information-based indices.

Figure 2 shows the difference between the mean number of selected factors

and the quasi-true number of factors. We chose to plot results only for N D 100

and 3,000 (results for N D 500 and 1,000 are provided online at the first author’s

website5). In the plots, positive numbers represent overfactoring with respect

to the quasi-true m and negative numbers represent underfactoring. Overall,

overfactoring was a more regular occurrence than underfactoring. As expected,

RMSEA had a tendency to overfactor in small samples .N D 100/. The RMSEA

lower bound rarely overfactored, and its good performance was not affected by

sample size. AIC performed well in small samples .N D 100/ but had a tendency

to severely overfactor in larger samples (i.e., N D 500 in our simulation),

especially for small numbers of factors. BIC also overfactored as N increased

but not as severely as AIC. Figure 3 displays the standard deviation of the

5http://quantpsy.org
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MODEL SELECTION IN FACTOR ANALYSIS 43

FIGURE 2 Degree of under- or overfactoring for root mean square error of approximation

(RMSEA) and its confidence interval (CI) lower bound, AIC, and BIC for three numbers of

variables (p D 9, 12, 15) and two sample sizes (N D 100, 3,000) (color figure available

online).

recommended m for each FRC across 1,000 repetitions. All else being equal,

smaller standard deviations are preferable.

As expected, RMSEA outperformed AIC except when N was small .N D
100/. BIC performed well overall, but as N increased to large sample sizes (N D

3,000), BIC’s performance suffered, particularly for few factors. We emphasize
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44 PREACHER, ZHANG, KIM, MELS

FIGURE 3 Standard deviation of the recommended m for RMSEA and its CI lower bound,

AIC, and BIC for three numbers of variables (p D 9, 12, 15) and two sample sizes (N D 100,

3,000) (color figure available online).

again that AIC and BIC were not designed to select the model with the highest

verisimilitude but rather the model demonstrating the greatest fidelity in future

samples. The lower bound of RMSEA’s CI performed consistently well relative

to other FRCs. In terms of variability, BIC was the most stable index for the

smaller sample sizes examined in our simulation (i.e., N D 100 and 500),
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MODEL SELECTION IN FACTOR ANALYSIS 45

whereas RMSEA.LB was the most stable in larger samples (i.e., N D 1,000

and 3,000).

Demonstration 2: Maximizing Generalizability

Hypothesis 2 was aimed at finding the FRC that best identifies the model

with the highest generalizability, which we operationalize here as the ability

to cross-validate well to new data. Everett (1983) and Fabrigar et al. (1999)

explicitly recommended splitting a sample in two (if N is large enough to

support such a split) and examining the stability of factor solutions across

split halves. To investigate the abilities of RMSEA, RMSEA.LB, AIC, and

BIC to choose the model best able to cross-validate across repeated sampling,

we used a data generation strategy very similar to that in Demonstration 1,

this time generating two matrices (one for calibration, one for validation) from

each of 1,000 population matrices for each of 12 combinations of p and m

at four different sample sizes, using Fortran. Factor models (m D 1 to p/3)

were fit to each calibration matrix with the software program Comprehensive

Exploratory Factor Analysis (CEFA). Then the validation matrices were fit using

the same parameter estimates computed in the previous step (the validation

model therefore had no free parameters). For each of these validation matrices,

the log-likelihood was obtained (we term this the cross-validation log-likelihood,

or CV-lnL). The model (value of m) with the highest CV-lnL for each validation

matrix was noted. Figure 4 shows the mean number of factors with the highest

CV-lnL for particular quasi-true values of m. These curves can be thought of as

the “gold standard” by which each of the FRCs may be judged.

When N is small, the most replicable (or generalizable) number of factors

tends to be the quasi-true m, whereas the most replicable number of factors

increases (sometimes substantially) as N increases. That is, cross-validation will

select an increasingly complex model as the sample size increases. For extremely

large samples, the saturated model will beat any competing models in terms

of generalizability. Browne and Cudeck (1992, Table 2) illustrated the same

phenomenon using an empirical example.

Figure 5 shows—for RMSEA, RMSEA.LB, AIC, and BIC at different com-

binations of p and N—the average discrepancy (over 1,000 repetitions) between

the selected m and the m demonstrating the highest CV-lnL (results for N D 500

and 1,000 are provided online). In other words, Figure 5 shows underfactoring

and overfactoring not with respect to the quasi-true m but rather with respect

to the value of m that cross-validates the best. At N D 100, all four FRCs

performed well at selecting the most replicable m. Overall, AIC emerged as

clearly superior, with the performances of RMSEA, RMSEA.LB, and BIC

deteriorating badly as N and p increased (especially when the most replicable

m was small). These results are in agreement with those of Browne and Cudeck
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46 PREACHER, ZHANG, KIM, MELS

FIGURE 4 (See caption on page 47.)
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MODEL SELECTION IN FACTOR ANALYSIS 47

(1989). BIC, the other information-based criterion we examined, outperformed

RMSEA and RMSEA.LB but still underfactored.

Demonstration 3: Jessor and Jessor’s (1991) Values Data

We now illustrate how different goals, and use of FRCs consistent with each

of those goals, can lead to different model selection decisions in practice. We

make use of Jessor and Jessor’s (1991) Socialization of Problem Behavior in

Youth, 1969–1981 study. Specifically, we use the 30 items of the Personal Values

Questionnaire (PVQ; Jessor & Jessor, 1977), originally administered to 432

Colorado high school students in 1969–1972, but we make use of only the

1969 data. The PVQ was intended to tap three underlying dimensions: values

on academic achievement (VAC), values on social love (VSL), and values on

independence (VIN). There are no reverse-scored items, all items were scored

on a 10-point Likert scale (0 D Neither like nor dislike; 9 D Like very much),

and items from the three subscales were presented in a mixed order. Example

items were (for VAC) “How strongly do I like to have good grades to go on

to college if I want to?,” (for VSL) “How strongly to I like to get along well

with other kids?,” and (for VIN) “How strongly do I like to be able to decide

for myself how to spend my free time?”

Researchers using the PVQ may reasonably hope for good fit for the three-

factor model in a given sample with the hope that this good fit implies good fit

in the population (i.e., high verisimilitude) but may also hope that this model

stands a reasonable chance of cross-validating to other samples from the same

population (i.e., high generalizability). We randomly selected 212 students from

the 425 students with complete data on all 30 items and fit factor models with

m ranging from 2 to 10. We employed EFA with ML estimation in Mplus 6.12

(Muthén & Muthén, 1998–2011). Oblique quartimax (direct quartimin) rotation

was used in all models. All of the investigated FRCs are reported in Table 1. It

is clear from the results in Table 1 that RMSEA.LB favors a three-factor model,

in line with the original authors’ expectations. Few of the loadings are large,

but most follow the expected pattern. Overall, it is reasonable to conclude that

m D 3 is the quasi-true number of factors for these data, in line with the authors’

intent. However, a fourth factor could be retained that borrows items from the

other three factors and which is subject to a separate substantive interpretation.

We report loadings and factor correlations from the m D 3 and m D 4 analyses

in Table 2.

FIGURE 4 (See artwork on page 46.) The abscissa lists the quasi-true number of factors

(m); the ordinate represents the mean number of factors with the highest cross-validation

log-likelihood (CV-lnL) for particular values of m (color figure available online).
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48 PREACHER, ZHANG, KIM, MELS

FIGURE 5 Discrepancy (mean absolute deviation) between the selected m and the m with

the highest likelihood on cross-validation for RMSEA and its CI lower bound, AIC, and BIC

for three numbers of variables (p D 9, 12, 15) and two sample sizes (N D 100, 3,000)

(color figure available online).

AIC tells a different story, instead indicating that the optimal number of

factors (this time emphasizing cross-validation potential) is m D 8. In practice it

would generally not be possible to evaluate how well AIC performs in this regard

unless the sample is split or a second sample is set aside for this purpose. We

treated the remaining 213 participants with complete data as a validation sample
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MODEL SELECTION IN FACTOR ANALYSIS 49

TABLE 1

Factor Retention Criteria and Cross-Validation Log-Likelihood for

Factor Models in Demonstration 3

Calibration Validation

m AIC BIC RMSEA RMSEA.LB CV-lnL

2 17,055.489 17,354.225 .078 .071 �8,381.557

3 16,852.055 17,244.776* .059 .051 �8,219.392

4 16,810.006 17,293.355 .052 .044* �8,208.548

5 16,786.896 17,357.516 .047* .037 �8,209.348

6 16,772.804 17,427.338 .041 .030 �8,202.758

7 16,773.172 17,508.265 .038 .025 �8,198.476*

8 16,766.226* 17,578.520 .031 .013 �8,210.157

9 16,769.116 17,655.255 .025 .000 �8,238.995

10a 16,779.801 17,736.428 .020 .000 �8,236.739

Note. m D number of factors; AIC D Akaike’s (an) information criterion; BIC D Bayesian

information criterion; RMSEA D root mean square error of approximation; RMSEA.LB D RMSEA

90% confidence interval lower bound; CV-lnL D cross-validation log-likelihood.
aThe 10-factor solution contained an extremely large negative unique variance for the fourth

values on social love (VSL) item, compromising the admissibility and interpretability of this solution.

*Asterisks indicate the selected model (for AIC, BIC, RMSEA, and RMSEA.LB) or the model

with the highest CV-lnL.

for the factor structures we earlier estimated using the calibration sample. We

fit each of our models to the validation sample, fully constraining each model

to parameter values estimated using the calibration sample. Agreeing closely

with expectations based on AIC, the model with the highest cross-validation

log-likelihood is the m D 7 model, with the highest (least negative) CV-lnL

out of all nine competing models (see the final column of Table 1). Thus,

AIC selected a model very nearly the most generalizable, as reflected in the

fit of the fully parameterized model to an independent sample. After a point

the loadings become difficult to interpret, but the most interpretable number of

factors lies somewhere between m D 3 and m D 8. Complete results from this

demonstration are available online.

Demonstration Summary

The implications of these demonstrations for the applied researcher are clear. If

the researcher were curious about the number and nature of factors underlying

the data in hand, RMSEA and (especially) RMSEA.LB are good choices. BIC’s

choice was unexpectedly in agreement with RMSEA and RMSEA.LB for most

of the Ns examined. Demonstrations 1 and 2 suggest that BIC is not particularly
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50 PREACHER, ZHANG, KIM, MELS

TABLE 2

Oblique Quartimax (Direct Quartimin) Rotated Factor Loadings and Factor

Correlations for m D 3 and m D 4 Models in Demonstration 3

m D 3 Solution m D 4 Solution

Item I II III I II III IV

VSL1 0.038 0.566 0.009 0.038 0.549 �0.001 0.058

VSL2 �0.097 0.565 0.103 �0.065 0.556 0.119 0.014

VAC1 0.512 �0.087 �0.080 0.522 �0.080 �0.054 �0.033

VIN1 0.067 �0.043 0.350 0.079 �0.061 0.314 0.104

VAC2 0.427 �0.068 0.147 0.293 �0.119 �0.022 0.338

VIN2 0.069 �0.193 0.576 0.078 �0.221 0.517 0.167

VSL3 �0.013 0.509 0.122 0.030 0.508 0.163 �0.011

VAC3 0.513 0.017 �0.081 0.424 �0.006 �0.164 0.170

VIN3 �0.019 0.067 0.344 �0.098 0.021 0.213 0.289

VSL4 �0.058 0.830 �0.117 �0.046 0.820 �0.093 0.001

VAC4 0.752 �0.043 �0.043 0.784 �0.035 0.003 �0.044

VSL5 0.111 0.521 0.084 0.035 0.483 �0.013 0.236

VIN4 �0.040 �0.031 0.508 �0.078 �0.070 0.411 0.249

VAC5 0.557 0.210 0.103 0.568 0.204 0.118 0.056

VIN5 �0.166 0.044 0.460 �0.046 0.056 0.565 �0.095

VAC6 0.708 �0.087 �0.024 0.632 �0.105 �0.092 0.155

VSL6 0.004 0.380 0.157 �0.027 0.351 0.100 0.151

VIN6 �0.061 0.020 0.466 0.059 0.035 0.581 �0.098

VAC7 0.330 0.053 0.310 0.222 0.001 0.154 0.338

VIN7 0.261 �0.155 0.334 0.101 �0.228 0.107 0.451

VSL7 0.311 0.287 0.110 0.101 0.213 �0.145 0.518

VSL8 0.139 0.238 0.283 �0.079 0.152 0.017 0.579

VAC8 0.722 0.061 �0.060 0.784 0.075 0.009 �0.090

VIN8 0.022 0.274 0.226 �0.035 0.236 0.122 0.221

VAC9 0.244 0.195 0.291 0.112 0.136 0.120 0.399

VIN9 �0.160 0.064 0.433 �0.061 0.072 0.511 �0.054

VSL9 0.086 0.710 �0.078 0.129 0.715 �0.019 �0.056

VAC10 0.577 0.173 0.074 0.547 0.158 0.043 0.120

VIN10 �0.129 0.067 0.463 �0.098 0.053 0.448 0.089

VSL10 0.064 0.695 0.053 0.067 0.678 0.053 0.068

1 1.000 1.000

2 0.293 1.000 0.261 1.000

3 0.077 0.069 1.000 �0.042 0.012 1.000

4 0.323 0.223 0.165 1.000

Note. In each solution, the largest loading in each row is in boldface. VAC D values on

academic achievement; VSL D values on social love; VIN D values on independence.
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MODEL SELECTION IN FACTOR ANALYSIS 51

useful for identifying the most replicable m, except perhaps at very large N.

Instead, AIC performed well at selecting a generalizable model with strong

cross-validation potential.

DISCUSSION

Cudeck and Henly (1991) state, “It may be better to use a simple model in

a small sample rather than one that perhaps is more realistically complex but

that cannot be accurately estimated” (p. 513), a point echoed by Browne and

Cudeck (1992). We agree. Our treatment owes much to these sources. In this

article we apply these ideas to the context of choosing the number of factors in

exploratory factor analysis, emphasizing and illustrating a distinction between

the behavior of indices that minimize OD (i.e., those that select m on the basis

of generalizability) and those that minimize DA (i.e., those that select m on the

basis of verisimilitude). Proceeding from the reasonable assumption that cross-

validation and replication are both worthy scientific goals, we emphasize that it is

often worthwhile to seek the value of m that yields the most generalizable factor

model in a given setting. This is the model, out of all competing alternatives, that

shows the best balance of goodness of fit and parsimony and the one that best

predicts future data (i.e., minimizes OD). We recommend using AIC as a factor

retention criterion if generalizability is the goal. At the same time, we recognize

that another worthwhile goal of science is to search for the objective truth.

Often researchers would like to find the one model out of several competing

models that best approximates the objectively true data-generating process (i.e.,

the model that minimizes DA), even if that model is not likely to generalize well

in future samples. For this goal, we recommend using RMSEA.LB. RMSEA.LB

performed well at recovering the quasi-true number of factors at all investigated

sample sizes. Both goals can be explicitly pursued in the same study to yield a

more thorough, well-considered analysis.

A limitation of this study is that conclusions are circumscribed by our choice

of manipulated factors, conditions, and specific factor retention criteria. We

strove to include criteria that are representative of their classes. For example,

we chose RMSEA and its CI lower bound RMSEA.LB to represent DA be-

cause it is the most popular such measure, is included in a variety of software

packages, and is often discussed as a measure of DA (Browne & Cudeck, 1992;

Cudeck & Henly, 1991) despite its limitations (e.g., Curran et al., 2003; Savalei,

2012). There are other measures of DA—for example, the unbiased estimate

of population discrepancy proposed by McDonald (1989), OF0 D OFML � df =n,

which simply equals RMSEA2 �df if the max{.} operator in Equation (3) is not

invoked when computing RMSEA. Likewise, there are other measures of OD—

for example, a version of AIC corrected for finite sample size (AICc) has been
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recommended for use when N is small relative to qk (Burnham & Anderson,

2004). It is possible that conclusions would differ had other measures of OD or

DA been included, so caution should be exercised in extending our conclusions

to criteria other than those we investigated.

It is our experience that indices developed with generalizability in mind are

commonly misapplied for the purpose of selecting the model with the most

verisimilitude. For example, AIC has been criticized because it has a tendency

to favor more complex models as N increases, even though the choice of

what model is the most objectively correct should not depend on sample size

(McDonald, 1989; McDonald & Marsh, 1990; Mulaik, 2001). But selecting a

model based on its objective correctness does not guarantee that it will be useful

in predicting future data, and vice versa, so we agree with Browne (2000) and

Cudeck and Henly (1991) that this criticism is not entirely justified. Even if the

“true” model is known with certainty, in small samples parameter estimates are

so unstable from sample to sample that accurate prediction of future samples

often cannot be achieved.

To summarize, researchers should consider adopting a model selection strat-

egy when choosing m. We join Grünwald (2000) in emphasizing that model

selection is not intended to find the true model but rather is intended to identify

a parsimonious model that gives reasonable fit. In the context of factor analysis,

this strategy involves identifying a few theoretically plausible values for m

before data are collected. It also involves recognizing that generalizability (a

model’s potential to cross-validate) and verisimilitude (a model’s proximity

to the objective truth) are not synonymous and therefore constitute separate

goals in model fitting and theory testing. Because both goals are generally

worth pursuing, we advocate using generalizability as a criterion for success

in addition to closeness to the truth. There is little utility in identifying the

approximately correct m if the factors fail to replicate over repeated sampling

(McCrae, Zonderman, Costa, Bond, & Paunonen, 1996). When selection with

respect to verisimilitude and generalizability lead to choosing different models,

we suggest selecting the more generalizable model as long as its absolute fit is

judged to lie within acceptable limits and the factors remain interpretable. These

points apply more broadly than the factor analysis context; in fact, the indices

we used as FRCs in this study are commonly used as model selection criteria

in more general latent variable analyses like structural equation modeling (of

which EFA is a special case). Choosing models with high verisimilitude and

generalizability is also of interest in those contexts. However, because these

criteria may perform differently in contexts other than EFA, our simulation

results should not be generalized beyond EFA without further investigation.

Choosing m is a difficult problem to which there is no clear solution. Follow-

ing the recommendations of many psychometricians (e.g., Nunnally & Bernstein,

1994), perhaps the best strategy is to use several criteria in conjunction to con-
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verge on the most appropriate value for m. We again emphasize that regardless of

the decision aids employed, the retained factors must be interpretable in light of

theory. Factor analysis involves identifying an appropriate number of factors,

choosing an estimation method, conducting factor rotation, and interpreting

rotated factor loadings and factor correlations. Decisions made in any step have

a profound influence on other steps and thus affect the overall quality of factor

analysis results. We believe the strategy of employing different factor retention

criteria for different purposes will improve applications of factor analysis.
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