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Original Research

In this special issue of Exceptional Children 
are assembled seven reports of randomized 
controlled trials (RCTs) of validated instruc-
tional interventions that were designed to 
improve student learning in early education—
five in the context of reading (Clemens et al.; 
Coyne et al.; D. Fuchs et al.; Vaughn et al.; 
Wanzek et al.) and two in the context of math-
ematics (Clarke et al.; L. Fuchs et al.).1 In each 
study, learners, classrooms, or small groups 
were randomized to treatment or control con-
ditions.

As noted in the introduction to this special 
issue, “Moderation analysis can be an impor-
tant means by which interventionists better 
understand the nature and effects of their inter-
ventions.” Indeed, a timely and welcome run-
ning theme uniting these articles is a shared 
focus on differential gains in response to  
intervention that may be conditional on prein-
tervention aptitudes—in other words, aptitude-
by-treatment interactions (ATIs)—manifested 
in different ways across studies. An aptitude is 

any characteristic of a person that forecasts his 
or her probability of success under a given 
treatment (Cronbach & Snow, 1977). All seven 
articles in this special issue deal with ATIs.

We appreciate being asked to provide a 
commentary on the statistical methodology 
employed in these studies. We use this com-
mentary to suggest some methods that have the 
potential to advance the field of special educa-
tion in the future. Because special education is 
such a high-stakes issue, it is critical that the 
best statistical methods be employed to com-
plement rigorous experimental design so that 
new interventions may be assessed and cus-
tomized to suit the learning needs of individual 
learners. Because of the inherent hierarchical 
structure of most educational interventions, 
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here we focus specifically on methodological 
issues surrounding the assessment of ATIs in 
multilevel data. Our commentary is organized 
into three major sections: (a) an overview of 
traditional methods for investigating ATIs, (b) 
an overview of modeling ATIs in multilevel 
contexts, and (c) a discussion of limitations of 
traditional approaches for theorizing about and 
modeling ATIs together with suggested solu-
tions. These solutions include splitting interac-
tion effects into level-specific components, 
understanding and minimizing threats to ade-
quate power for detecting ATIs, expanding 
focus beyond linear ATIs to consider the non-
linear aptitude–achievement relationship to be 
moderated by intervention, and a reconceptual-
ization of ATIs in terms of growth in achieve-
ment, with intervention and aptitude as 
moderators of aspects of change. Incorporating 
some of these best practices into future research 
can motivate new research questions about 
educational interventions and lead to new dis-
coveries in the search for ATIs. Throughout, we 
make reference to the studies reported in this 
special issue.

Introduction to Investigating 
ATIs

Although research on educational interven-
tions aims to shape future instruction to maxi-
mize learning, specific goals for accomplishing 
this vary by study. One goal may be for all 
learners to achieve a common level of mastery 
(minimization of individual differences in 
achievement). Another goal may be for all 
learners to maximize their achievement by 
capitalizing on individual aptitudes, which 
can lead to larger postintervention ability 
gaps. A third alternative goal may be to 
enhance the quality of instruction for all learn-
ers while deliberately minimizing the achieve-
ment gaps that exist among those who are 
differentially advantaged by differences in 
aptitudes or socioeconomic circumstances. At 
some level, all of these goals require research 
to inform the creation, implementation, and 
assessment of adaptive instruction tailored to 
the needs of individual learners.

The first step toward crafting instructional 
methods that can be tailored to different kinds 
of learners is to identify the preintervention 
characteristics that distinguish different types of 
learners. One common approach is first to rely 
on theory and cumulative research to create tar-
geted instructional strategies, assess learners’ 
pretreatment aptitudes on the dimension of 
interest, and then use them to predict postinter-
vention abilities in both the treated and 
untreated groups. Typically, but not always, the 
pretreatment aptitude measure is the same as 
the posttreatment ability measure, administered 
sometime prior to treatment. An ATI (Cronbach 
& Snow, 1977) is evident if the interaction 
effect differs significantly from zero.

A standard tool kit of methods has evolved 
for specifying, testing, and (if significant) 
communicating interaction effects. The first 
step is to specify a model containing a param-
eter that reflects the presence and magnitude 
of the interaction, usually a linear regression 
model. The simplest model takes the form

y b b x b z b x z e
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i i i i i i

i

= + + + +0 1 2 3

20~ ( , ),σ
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where yi is the achievement outcome for indi-
vidual i, b0 is the intercept, b1 is the condi-
tional linear effect of the focal predictor x on 
y where the moderator z = 0, and b2 is the 
conditional linear effect of the moderator z 
where x = 0. The interaction effect, b3, is the 
amount by which the slope of x is expected to 
change for a one-unit increase in z (or, sym-
metrically, the amount by which the slope of z 
is expected to change for a one-unit increase 
in x). The points x = 0 and z = 0 need not be 
meaningful values. The model is invariant to 
linear rescalings of x, z, or both; that is, the 
model-implied values of y and significance of 
the interaction will not change with such res-
calings. In ATI research, aptitude is often 
treated as a moderator of the intervention 
effect. Mathematically, it is arbitrary which 
predictor is treated as the focal predictor and 
which is treated as the moderator. For consis-
tency, we treat aptitude as the focal predictor 
(x) and intervention as the moderator (z).
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The second step is to fit the model to data, 
typically by regression analysis. The goal of 
model fitting is to estimate the regression 
coefficients, including the key parameter b3. 
In the third step, b3 is tested for significance. 
If significant, the interaction is termed a bilin-
ear interaction because Equation (1) may be 
rearranged to show that the intercept and the 
slope of x are linear functions of z:

y b b z b b z x ei i i i i= + + + +( ) ( ) .0 2 1 3  (2)

Here, ( )b b zi1 3+  is the simple slope of x 
where zi is any interesting fixed value of the 
moderator.

If b3 is significant, the fourth step is to 
graphically illustrate the interaction to facili-
tate interpretation. There are two common 
strategies. The first is to choose a sequence of 
benchmark values within the observed range 
of z and plot the simple regression of y on x at 
those values. This conditional value method 
(Aiken & West, 1991; Dearing & Hamilton, 
2006) yields a graphical illustration of the pre-
dicted values of y as a function of x for hypo-
thetical cases at different points along z, which 
may be continuous or categorical. If the mod-
erator is categorical with k ⩾ 3 groups, then z 
is replaced with k – 1 dummy codes, and the 
simple regression of y on x is plotted at condi-
tional values of these dummy codes. In ATI 
research, aptitude is often placed on the hori-
zontal axis, and the conditional regression of y 
on x is plotted for each treatment condition (z 
= 0 or 1) so that the treatment effect can be 
discerned as the vertical distance between the 
lines at any chosen value of x (as in Coyne 
et al., D. Fuchs et al., and L. Fuchs et al.).

Bilinear interactions can assume any of sev-
eral distinct patterns. Figure 1 contains exem-
plar conditional value plots of some of these 
basic forms, with labels that are sometimes 
attached to each pattern (e.g., Cronbach & 
Snow, 1977; McCabe, Kim, & King, 2018). 
The horizontal axis in each plot in Figure 1 
spans the range of the focal predictor x, and the 
vertical axis represents the outcome y. Each line 
on a given plot is the regression equation relat-
ing y to x at conditional values of the moderator 
z; these may be any reasonable, interesting  

values within the observed range of z. In the ATI 
context, z is the absence or presence of the edu-
cational intervention.

The second, and less common, graphical 
strategy involves plotting the x → y simple 
slope as a function of z in cases where z is 
continuous. In these marginal-effects plots 
(Dearing & Hamilton, 2006; McCabe et al., 
2018), the plot relating the simple slope to z is 
depicted with (often) 95% confidence bands, 
continuously plotted 95% confidence inter-
vals (CIs), around the estimated simple slope 
across the range of z. The values of z for 
which the confidence bands exclude zero 
constitute the region of significance 
(Preacher, Curran, & Bauer, 2006). Deter-
mining this region algebraically is known as 
the Johnson-Neyman technique (Johnson & 
Neyman, 1936). In ATI research, because 
aptitude is continuous and treatment is cate-
gorical, the roles of x and z are switched; that 
is, the horizontal axis represents aptitude and 
the treatment effect is plotted as a function of 
aptitude. Clarke et al. and Coyne et al. use 
this graphical method, plotting the treatment 
effect as a continuous linear function of apti-
tude. Clemens et al. report regions of signifi-
cance but without the optional plots.

Among the special issue articles, L. Fuchs 
et al. found a main effect of combined treat-
ment conditions but no interaction, implying 
that the treatments worked well across the 
observed range of aptitude. Clarke et al. and 
D. Fuchs et al. found a kind of compensatory 
interaction, in which most learners benefited 
from instruction of any sort, but those with 
relatively low pretest scores especially so. 
Coyne et al. describe a synergistic interaction, 
in which learners with relatively larger vocab-
ularies were able to benefit more from an 
intervention than were those with smaller 
vocabularies, creating an even larger gap 
between low- and high-aptitude learners.

Traditional Methods for 
Investigating ATIs With 
Multilevel Data

In most ATI research, groups rather than indi-
vidual learners are randomized to treatments. 
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This special case of the RCT is known as a 
cluster randomized trial (CRT). When faced 
with multilevel (or clustered) data, there are 
two main options: standard-error adjustment 
and multilevel modeling (MLM). Standard-
error adjustment is often used when cluster-
induced dependency in the data is not of 
substantive interest, perhaps because it arises 
as an artifact of data collection but is absent 
from the population of inference. For exam-
ple, if data are collected from artificially con-
structed groups, yet hypotheses refer to a 

population without such groups, then stan-
dard-error adjustment might be appropriate to 
obtain unbiased estimates of sampling vari-
ability for key parameter estimates. However, 
in most educational research, data are inher-
ently clustered because learners are taught in 
groups by the same instructors for extended 
time periods. This situation calls for MLM, 
also known as random coefficient modeling or 
hierarchical linear modeling (for an excellent 
introduction, see Hox, Moerbeek, and van de 
Schoot (2018).

Figure 1. Four prototypical interaction effects. The crossover interaction is an example of a disordinal 
interaction (the lines cross, showing different treatment effect directions for learners with different 
aptitudes). The other three are examples of ordinal interactions.
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Equation (1) can be modified to account 
for clustering by using a multilevel model, 
such as
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Here subscript i still references the individual 
learner and j indexes cluster, which may repre-
sent school, classroom, or small group, depend-
ing on the data. This model permits the intercept 
and the slope for x to vary randomly across 
clusters. When (as in all the special issue arti-
cles) there is no reason to suspect that the apti-
tude–achievement relationship varies across 
clusters, the constraints τ11 = τ10 = 0 are 
applied and Equations (3) and (4) reduce to

y x z

x z u e
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ij j j ij

= + +

+ + +

γ γ γ

γ
00 10 01

11 0

   (5)

u N e Nj ij0 00
20 0~ , , ~ ( , )τ σ( )  (6)

As in Equations (5) and (6), it is good practice 
to include the fitted MLM equations in ATI 
research reports, as in D. Fuchs et al., L. Fuchs 
et al., Coyne et al., Vaughn et al., and Wanzek 
et al. Doing so removes ambiguity about the 
fitted model, facilitates interpretation of 
model parameters, and enables easier replica-
tion of the analyses.

This model in Equations (5) and (6) can be 
extended in numerous ways. A third level can be 
accommodated, and any number of predictors—
including moderators—may be added at any 
level. For instance, it is possible to include more 
than one aptitude measure (as in Vaughn et al.). 
If the sample is sufficiently large and theory suf-
ficiently rich, the researcher may consider 
higher-order interactions among several apti-
tudes (as in Vaughn et al.) or among several apti-
tudes and treatments.

With the exception of Clemens et al., who 
used standard-error adjustment, and Vaughn 

et al., who used a single-level model due to 
negligible clustering, the special issue articles 
each used a version of the MLM in Equations 
(5) and (6). Clarke et al. fit a partially nested 
MLM (for review, see Sterba, 2017) to accom-
modate a data structure in which learners were 
clustered in groups of two or five in the inter-
vention conditions but were ungrouped in the 
control condition. All learners were further 
clustered in classrooms. Coyne et al. fit a four-
level MLM (learner within subcluster within 
classroom within school), with intervention as 
a Level 2 predictor. D. Fuchs et al. report a 
three-level MLM, with learners within class-
rooms within schools. In contrast to Equation 
(5), they considered treatment a Level 1 mod-
erator because the intervention was adminis-
tered in the form of one-on-one tutoring and 
different learners in the same classroom could 
be randomized to one of three conditions. L. 
Fuchs et al. also used a three-level MLM, in 
which teachers and classrooms were cross-
classified at Level 2 within schools. Finally, 
Wanzek fit two-level MLMs, with students 
nested in classrooms.

Typically, methods for evaluating and 
communicating interactions from single-level 
analysis are adopted in MLM. That is, coeffi-
cient γ11 from Equation (5) is tested, and if it 
is both statistically and practically significant, 
the interaction is probed and plotted using 
methods described earlier. In the next section, 
we highlight further improvements and refine-
ment of this method for multilevel settings.

Limitations of Traditional 
ATI Research and Best-
Practice Solutions

In this section we discuss several limitations 
of traditional ATI research and we provide 
best-practice solutions for each.

Limitation: Conflating Interaction 
Effects Across Levels

Consider the common MLM without an 
interaction where, for instance, clusters are 
classrooms:
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y x u eij ij j ij= + + +γ γ00 10 0    (7)

u N e Nj ij0 00
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In such models, the predictor xij can be decom-
posed into uncorrelated within- and between-
class components by subtracting the class 
average x.j from xij and then using x.j as a sepa-
rate Level 2 predictor. This yields a model 
with both within and between effects of xij 
(respectively, γ10 and γ01):

y x x x u eij ij j j j ij= + − + + +γ γ γ00 10 01 0( ) .. .  (9)

Here, γ10 reflects the relationship between the 
outcome and one’s standing on xij relative to 
the class mean, and γ01 reflects the relationship 
between the outcome and class averages of the 
predictor. It can be shown that γ10 from Equa-
tion 7 is a weighted average of γ10 and γ01 
from Equation (9) and hence may not be inter-
pretable. Many methodologists have echoed 
this problem (e.g., Burstein, 1980; Kreft, de 
Leeuw, & Aiken, 1995; Lüdtke et al., 2008; 
Preacher, Zyphur, & Zhang, 2010), yet appli-
cations of MLM in the ATI literature that sepa-
rate effects of Level 1 predictors remain rare.

The consequences of failing to estimate 
separate level-specific effects can be serious. 
If the true within- and between-class effects of 
aptitude on achievement are, respectively, γ10 
= .7 and γ01 = .4, their weighted average of 
(say) .58 characterizes neither students nor 
classes. Conversely, a nonsignificant overall 
slope near zero may mask a significant posi-
tive within slope and a significant negative 
between slope, a doubly tragic loss because 
two important effects will have been missed. 
It might be argued that if the level-specific 
effects are similar, then there is little harm in 
constraining them to equality (yielding Equa-
tion [7]), but we are still left with the problem 
that the units of analysis for the two conflated 
effects differ. Hence, it is unclear how to inter-
pret their weighted average.

The problem of conflated effects is even 
more pernicious in the context of interactions. 
As Cronbach and Snow (1977) note, “Regres-
sions and interactions divide—at least in prin-
ciple—into group and individual components 

that have distinct substantive meanings. Rec-
ognition of these distinctions forces a radical 
change in thinking about ATI” (p. 100). Ander-
son (1941) identified a significant ATI in a 
study on arithmetic instruction, showing that 
drill instruction worked best for learners with 
high aptitude, whereas instruction emphasiz-
ing meaning worked best for learners with low 
aptitude. Cronbach and Webb (1975) famously 
reanalyzed Anderson’s original data, showing 
that the within-classroom ATI (the interaction 
of instructional method with the within-class-
room component of aptitude) was nonsignifi-
cant, and there were too few classrooms to 
obtain a reliable estimate of the between-class-
room ATI (the interaction of instructional 
method with the classroom-average aptitude). 
In other words, the single ATI reported by 
Anderson likely was illusory. Many method-
ologists have since recommended that interac-
tion effects should be split into level-specific 
components, not only for examining ATIs but 
for any interaction effect involving at least one 
Level 1 predictor or moderator (e.g., Aguinis, 
Gottfredson, & Culpepper, 2013; Enders & 
Tofighi, 2007; Kreft et al., 1995; Preacher, 
Zhang, & Zyphur, 2016).

Solution: Splitting Interaction Effects 
Into Level-Specific Components

In ATI research where the treatment variable 
is typically administered to clusters, there are 
two ways to model level-specific interactions. 
The first method for modeling level-specific 
interactions involves centering aptitude (x) at 
its cluster mean and fitting the following 
MLM, where xi. = xij – x.j:

y x z x z

x x z u e

ij j j j j

i i j j ij

= + + + +

+ + +
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The slope of xi. is not treated as random here, 
but could be. In this model, γ03 quantifies the 
Level 2 interaction, such that the effect of the 
intervention on classroom-average achieve-
ment is conditional on classroom-average 
aptitude. Further, γ11 is a cross-level interac-
tion interpretable (when casting treatment as 
the moderator) as the difference between 
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treatment and control groups in the within-
classroom aptitude–achievement relationship. 
Coyne et al. implemented a more complex 
version of this strategy. They fit a four-level 
model, with the aptitude measure split into 
four level-specific components, yielding four 
level-specific effects plus a cross-level inter-
action of treatment (Level 2) with within-sub-
cluster aptitude (Level 1).

The second method for modeling level-
specific interactions involves using multilevel 
structural equation modeling (MSEM). The 
reason to consider MSEM is that the model in 
Equation (10) yields trustworthy estimates 
only to the extent that (a) there is sufficient 
cluster-level variance in aptitude, as reflected 
by x’s intraclass correlation (ICCx), and (b) 
clusters are sufficiently large; otherwise, the 
between effect of x will be biased toward the 
within effect. The use of MSEM largely elim-
inates this bias by replacing observed cluster 
means x.j with latent cluster means (Lüdtke 
et al., 2008); however, a cost can be reduced 
power for detecting the between portion of the 
interaction. Preacher et al. (2016) show how 
to estimate interaction effects—including 
cross-level interactions like most ATIs—using 
MSEM. See Wanzek et al. for an application 
of MSEM to investigate classroom-level 
moderation of a treatment effect.

In our view, it is typically worth estimating 
a few additional parameters in order to decom-
pose main effects and interactions involving 
Level 1 predictors into within and between 
components. If effects are not separated, and 
an ATI is found, we cannot know whether the 
interaction is driven primarily by student- or 
cluster-level forces. Or, if an ATI is not found, 
low power could be the culprit, as we discuss 
in the next section. But it also could be that 
either the within or between ATI would be 
detectable had effects been separated, but they 
remain obscure when conflated.

If effects are not separated, and an 
ATI is found, we cannot know 

whether the interaction is driven 
primarily by student- or cluster-

level forces.

Limitation: Threats to Statistical 
Power for Detecting ATIs

Substantiated claims of ATIs in practice were 
rare by the mid-1970s (Cronbach & Snow, 
1977). They are still rare. Some of the rea-
sons for their rarity may have nothing to do 
with statistical power. For instance, theoreti-
cal and mathematical constraints on the pos-
sible forms of the interaction can make some 
interaction hypotheses highly unlikely or 
impossible to support (Rogers, 2002). For 
example, most ATI research concerns ordinal 
interactions with one continuous predictor, 
aptitude (because it is rare to expect an inter-
vention to enhance learning for those with 
aptitudes in one range but actually suppress 
learning for others). However, it is especially 
difficult to detect ordinal interactions when at 
least one predictor is continuous (Rogers, 
2002).

Part of the apparent scarcity of ATIs very 
likely is due to low statistical power. Even in 
the best of circumstances, interaction effects 
are notoriously difficult to detect (Aguinis, 
1995; Zedeck, 1971). A variety of reasons have 
been suggested for the depressed power seen in 
interaction research. Some reasons include 
error variance heterogeneity across groups 
(Alexander & DeShon, 1994), measurement 
error (Busemeyer & Jones, 1983; Mathieu, 
Aguinis, Culpepper, & Chen, 2012), informa-
tion loss due to using coarse measurement 
(Russell & Bobko, 1992), and unbalanced sam-
ple sizes across groups (Stone-Romero, Alliger, 
& Aguinis, 1994). For instance, Mathieu et al. 
(2012) found that low sample size at either 
Level 1 or Level 2 can undermine power for 
tests of cross-level interactions. Often several 
of these issues coexist in a given study, com-
pounding the problem.

Part of the apparent scarcity of 
ATIs very likely is due to low 

statistical power.

Another reason for low power to detect 
interactions is particularly common in ATI 
research: restriction of range (e.g., Smith & 
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Sechrest, 1991; Stone-Romero & Anderson, 
1994). All but one of the studies in this special 
issue (Wanzek et al.) restricted the range of apti-
tude or pretest scores in some way by design. 
Coyne et al. restricted focus to learners below 
the 30th percentile and between the 37th and 
67th percentiles on the Peabody Picture Vocab-
ulary Test. Clemens et al. examined learners 
assigned to reading intervention classes based 
on poor prior test performance. D. Fuchs et al. 
chose learners based on teacher nominations of 
lowest-performing learners, followed by elimi-
nation of 40% of the remaining learners based 
on rank-ordered factor scores. Clarke et al. 
selected the lowest-performing learners based 
on a composite of two number-sense instru-
ments. L. Fuchs selected learners with math 
factor scores below the 40th percentile. Vaughn 
et al. restricted attention to learners with a stan-
dard score below 85 on the Gates-MacGinitie 
Reading Comprehension subtest. A focus on 
learners with low initial aptitudes (e.g., learn-
ing-disabled learners) seems reasonable 
because they are often the targets of novel 
instructional interventions. However, restriction 
of range to one or two narrow bands within the 
full range of aptitude scores can seriously 
undermine power for detecting an ATI. Ironi-
cally, researchers intent on creating interven-
tions targeted to low-performing learners may 
be sacrificing the statistical power they need to 
identify those populations.

An additional reason for persistent low 
power for detecting ATIs is that, commonly, 
ATIs are omitted from the a priori power anal-
yses but are nonetheless later investigated in 
an exploratory analysis once main effects 
analyses have been conducted. Such tests of 
interactions are inevitably underpowered. 
When they are not detected, researchers will 
sometimes conclude that an intervention 
worked well (or did not work) for all learners, 
regardless of aptitude, but low power may 
instead be responsible.

Solution: Methods for Assessing and 
Increasing Power for Detecting ATIs

We echo Mathieu et al. (2012) in strongly rec-
ommending that researchers conduct an a pri-
ori power analysis, perhaps informed by a 

pilot study, that includes not only the antici-
pated main effects but also anticipated inter-
actions. Not only is it important to choose a 
minimally acceptable sample size on the basis 
of power analysis, but it is also advisable to 
exceed it by as much as possible, for two main 
reasons. First, the minimum sample size nec-
essary to detect a given effect size with (typi-
cally) a .80 probability does not, however, 
guarantee narrow CIs. Many methodologists 
have emphasized that obtaining a precise 
parameter estimate (a narrow CI) is probably 
more important than rejecting a point null 
hypothesis known a priori to be false (Kelley 
& Maxwell, 2003). Obtaining a usefully nar-
row CI typically requires a larger sample than 
does rejecting a null hypothesis. Second, 
power analyses are usually conducted under 
idealized circumstances conducive to higher 
power—normality, homoscedasticity, linear-
ity, no attrition, and so on—which are never 
fully realized in practice.

Software options exist for conducting sim-
ulation-based power analyses for cross-level 
interactions, like ATIs. For instance, Mplus 
8’s (Muthén & Muthén, 1998–2018) custom-
izable model simulation capabilities permit 
power analysis for a large variety of models 
and can incorporate attrition and assumption 
violation (Muthén & Muthén, 2002). Another 
example is MLPowSim (Browne, Lahi, & 
Parker, 2009), which can be run as a stand-
alone program to generate R code or in con-
junction with MLwiN. It handles a much 
smaller range of models than Mplus; however, 
it is free and can be used to conduct multiple 
power analyses in one run. A third example, 
ML Power Tool (Mathieu et al., 2012) can be 
run directly in R but, again, handles a much 
smaller range of models than Mplus. A suite 
of Excel-based tools (PowerUp!) is also avail-
able (Spybrook, Kelcey, & Dong, 2016).

Beyond conducting a priori power analy-
ses that include ATIs, there are additional 
strategies that can be used to mitigate the low 
power problem. First, strategically including 
covariates that are correlated with the out-
come but not with predictors will lower  
standard errors for interactions without alter-
ing effect sizes (Moerbeek & Teerenstra, 
2016). With random assignment, any  
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preintervention covariate will tend to be 
uncorrelated with treatment, but it may be 
difficult to identify covariates that are corre-
lated with achievement yet uncorrelated with 
aptitude. Second, taking repeated measure-
ments of the outcome can greatly enhance 
power. We return to this topic in a later sec-
tion. Third, using latent variables with mul-
tiple indicators (as in MSEM) can mitigate 
the effects of unreliability in measures of 
aptitude, achievement outcomes, and covari-
ates. The gain in power obtained by remov-
ing the attenuating effects of unreliability 
can greatly outweigh the increase in sam-
pling error incurred by estimating more 
parameters. Fourth, careful consideration of 
the chosen comparison standard is warranted 
due to its large influence on effect size, 
which in turn influences power. Choices for 
the comparison standard include (a) the com-
plete absence of an instructional method, (b) 
the business-as-usual (BAU) scientifically 
informed instructional method already in 
place, or (c) a novel competing intervention. 
The effect size could appear lowest under (c) 
but highest under (a). However, we caution 
that (a) usually is not feasible, realistic, or 
informative. We refer readers to Moerbeek 
and Teerenstra (2016) for additional design-
based strategies to enhance power.

In some situations, the goal or hope of the 
researcher is to fail to find evidence for an 
ATI. In this event, if ordinary hypothesis-test-
ing procedures are followed, there is a per-
verse incentive to seek lower power because 
failure to reject the null hypothesis is seen as 
providing support for the researcher’s predic-
tions. If the theoretical hypothesis is that an 
interaction does not exist or is too small to be 
practically relevant, then an alternative 
approach to hypothesis testing is more appro-
priate: equivalence testing (Walker & 
Nowacki, 2010). First the researcher estab-
lishes a practical definition of a “not meaning-
fully large” ATI—a range of values for the 
interaction effect that would be considered too 
trivial to be of consequence (say, the values in 
the interval ± .12). The null hypothesis is that 
the interaction effect lies outside this interval. 
Rejection of the null hypothesis implies that 

the entire 100(1 – α)% CI is inside the interval 
± .12. With equivalence testing, because nar-
row CIs are consistent with the desired out-
come, the researcher is once again rewarded 
for using large samples, reliable measurement 
instruments, and other factors that tradition-
ally improve power.

Limitation: Considering Only Linear 
Interactions

All of the articles in this special issue 
explored bilinear interactions, in which the 
linear slope of intervention was modeled as 
a linear function of aptitude. Assume for 
simplicity there are only two intervention 
groups—treatment and control. The effect 
of intervention must necessarily be linear—
it is binary, so its slope is interpreted as a 
mean difference in y. Linear moderation of 
this treatment effect is usually the default 
choice for a variety of reasons, including 
tradition, expedience, and unawareness of 
alternative options. However, the outcome, 
intercept, and slope in such a model need 
not be linear functions of the moderator(s). 
There are theoretical reasons for consider-
ing nonlinear ATIs. Indeed, we believe that 
linearity is the exception rather than the 
rule.

There are theoretical reasons for 
considering nonlinear ATIs. Indeed, 

we believe that linearity is the 
exception rather than the rule.

First, consider again the plot in Figure 1, 
Panel A, which represents a typical example 
of an ATI model. There are three variables 
involved: intervention (0,1), postinterven-
tion achievement (y), and preintervention 
aptitude (x). Aptitude assumes the role of the 
focal predictor, achievement is considered 
the dependent variable, and intervention is 
treated as the moderator. Traditionally, apti-
tude is used as the horizontal axis, and  
each intervention condition is represented 
by a conditional regression line. The entire 
plot is a snapshot in time with respect to 
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achievement. Aptitude is assessed just prior 
to, or concurrent with, the initiation of the 
intervention. In this example, most learners 
are expected to benefit from treatment 
regardless of their aptitudes, but learners 
with higher aptitudes are expected to benefit 
more (a synergistic interaction, as in Coyne 
et al.). Linearity is evident in three aspects 
of this plot: (a) a clear overall main effect of 
z on y (the average vertical distance between 
the lines), (b) a clear overall main effect of x 
on y (the average slope of y regressed on x), 
and (c) a bilinear ATI. An ATI is evident in 
the form of different x slopes for z = 0 and z 
= 1. In this plot it is clear that learners with 
higher aptitudes benefit more from treat-
ment, a common finding in practice.

Solution: Also Considering Nonlinear 
Interactions

The foregoing represents common practice in 
modeling ATIs. However, Smith and Sechrest 
(1991) note that when modeling ATIs, nonlin-
ear models may be more appropriate. Also in 
the ATI context, Cronbach and Snow (1977) 
explained that “floor and ceiling effects inevi-
tably place limits on the validity of a linear 
hypothesis. Data from the extremes of a scale 
often depart from a trend found in the middle 
range. Nor need causal relations be linear” (p. 
31). For an example of how such floor and 
ceiling effects could occur, consider that 
learners with low aptitudes may not have suf-
ficient foundational skills or knowledge to 

Figure 2. (A) A nonlinear Aptitude × Treatment interaction. (B) Intervention-related gain scores from 
Panel A.
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benefit from treatment (a floor effect), but 
learners with high aptitudes cannot benefit 
from treatment because they easily master  
the material with or without the intervention 
(a ceiling effect). However, learners in the 
middle of the distribution may gain from 
treatment, but to a degree conditional on their 
aptitudes. Floor and ceiling effects can also 
occur when the measurement instrument does 
not measure past a certain level of mastery or 
below some minimal level of understanding. 
We agree with D. Fuchs et al. that many tests 
are not designed to distinguish well within 
extremely low or extremely high achievers, 
even when these ability ranges are quite wide.

Using Figure 1, Panel A, as a springboard, 
consider the plot in Figure 2, Panel A, which 
may be a more realistic depiction of the rela-
tionship between x and y if a sufficiently full 
range of x were to be examined. In this hypo-
thetical example, the function linking x to y is 
logistic, one kind of intrinsically nonlinear 
function consistent with floor and ceiling 
effects like those suggested by Cronbach and 
Snow (1977). For instance, the model yield-
ing the plot in Figure 2, Panel A, might be a 
nonlinear MLM—specifically a moderated 
logistic function:
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The simple logistic intercept (γ00 + γ02zj + 
u0j) controls the horizontal position of the 
curve, with γ02 specifically controlling the 
horizontal distance between treatment and 
control curves. The simple logistic slope (γ10 
+ γ11zj) controls the rate at which the curve 
approaches the upper asymptote (mastery), 
with γ11 specifically controlling the treatment 
difference induced in this rate by intervention. 
Possibly only a segment of a curve like this 
describes the aptitude–achievement relation-
ship in a given population. The error variance 
in such a model can also be modeled as het-
eroscedastic—for instance, if there is lower 

residual variability for learners who test 
extremely poorly or extremely well because 
of floor and ceiling effects (Davidian & Giltinan, 
1995).

The standard practice of selecting learners 
on aptitude and fitting only a bilinear interac-
tion model can be seen as fitting an overly 
simple model to a selected subset of the popu-
lation. This can lead to models with reduced 
potential for generalizability. The four circled 
points in Figure 2 represent the synergistic 
bilinear interaction commonly seen when 
learners are selected based on, say, low and 
medium aptitude scores and a linear ATI 
model is fit. Had another range of aptitudes 
been selected, no interaction or even an antag-
onistic interaction might be observed. The 
S-shaped trends, and the distribution of inter-
vention-related gains for learners at different 
points along the aptitude distribution, would 
remain obscured.

Employing nonlinear functions allows the 
goal of an educational intervention to be stated 
more precisely or even conceptualized entirely 
differently. Consider for example the follow-
ing three ways that the goal of the intervention 
could be conceptualized using a moderated 
nonlinear model, none of which would be pos-
sible if a moderated linear model were fit. For 
example, one possible way to conceptualize an 
instructional intervention’s goal would be to 
shift the curve describing the treated learners’ 
aptitude–achievement relationship to the left 
relative to that of controls; this would in 
essence amount to an ATI because the vertical 
distance between the treatment and control 
curves changes in size across the range of apti-
tude (see Figure 2, Panel A, for illustration). A 
second way to conceptualize an intervention’s 
goal is to make the curve for treated learners 
rise more steeply than that for controls (again 
see Figure 2, Panel A, for illustration). The 
vertical bars between the curves in Figure 2, 
Panel A, represent the gain due to intervention 
conditional on several selected aptitudes; these 
gains are plotted in Figure 2, Panel B, where 
the greatest gains from intervention are 
enjoyed by learners in the middle one third of 
the aptitude distribution. A third possible way 
to conceptualize an intervention’s goal is to 
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raise the ceiling on learner understanding. Any 
of these criteria for success can be represented 
in nonlinear MLMs as free parameters or as 
random effects to be predicted.

It might be argued that models like that in 
Equation (11) are too complex to be practical. 
However, Equation (11) has just as many free 
parameters as the model in Equation (3)—
perhaps one more if the error variance is mod-
eled to be conditional on aptitude. In addition, 
several software options are available to help 
in fitting nonlinear models to individual learn-
ers’ data (e.g., PROC NLIN in SAS or NLR in 
SPSS) as well as for many learners simultane-
ously, with or without nesting in higher-level 
units, like classrooms or schools (e.g., PROC 
NLMIXED in SAS, nlme and lme4 in R, or 
Mplus). Interactions can be plotted and probed 
using procedures that extend those used in lin-
ear regression.

Limitation: Two-Occasion Designs 
for Investigating ATIs

Many examples of ATI research (e.g., Clarke 
et al.; Coyne et al.; D. Fuchs et al.; L. Fuchs 
et al.; Wanzek et al.) use the same instrument 
to measure both aptitude and achievement. 
Regressing the latter on the former is an 
example of assessing residualized change, 
one of two classic methods for gauging change 
using pre-post data. The other such classic 
method is the analysis of difference scores, in 
which the benefit of receiving intervention is 
quantified by subtracting aptitude from 
achievement (Δy = y2 – y1) and treating Δy as 
the variable of interest. In traditional ATI 
research, the residualized change method is 
implemented using a two-occasion design.

Smith and Sechrest (1991), however, raise 
concerns about the use of two-occasion designs 
in this context—making the sobering point that 
some apparent ATIs may reflect not qualitative 
treatment differences in the outcome but, 
rather, differences in the rate of change as a 
function of learners’ initial aptitudes. That is, 
all learners may eventually arrive at the same 
level of mastery as a result of the intervention, 
but at different speeds depending on their apti-
tudes. If the outcome is assessed prior to that 

point of eventual convergence, the pattern will 
resemble a synergistic ATI. Or the achievement 
outcome may be measured too early or too late 
to notice any treatment differences in learning 
as a function of aptitude at all. In general, the 
limitations of using only two occasions can be 
severe, as different learners’ trajectories may 
follow distinct, nonlinear functional forms, as 
in Figure 3. Although linear growth may be 
sufficient to approximate change over short 
periods of time, it may be a gross oversimplifi-
cation for trajectories of change over the time 
spanned by most educational interventions.

Solution: Conceptualizing ATIs as 
Aspects of Change Moderated 
by Intervention Using Multiple 
Repeated Measure Designs

To help guard against these possibilities, it  
is beneficial to assess learners at multiple 
occasions between the initial assessment of 
aptitudes and the final assessment of achieve-
ment and to extend the final assessment or 
follow-up period as much as is practical given 
constraints of the school year. Ideally each 
learner would be measured at least three times 
but preferably more (Smith & Sechrest, 1991; 
Willett, 1988–1989) to be able to model the 
learning trajectory for each individual. We 
advocate approaching the question of ATI 
from the perspective of longitudinal model-
ing—examining learning as a function of time 
and instructional intervention (Rogosa, 1991).

We advocate approaching the 
question of ATI from the perspective 

of longitudinal modeling—
examining learning as a function of 
time and instructional intervention

Unlike the residualized change score 
method, the difference score method extends 
naturally to any number of occasions (Rogosa, 
Brandt, & Zimowski, 1982; Rogosa & Willett, 
1985). The residualized change model favored 
in classic ATI research considers between-sub-
jects individual differences in achievement at a 
specific occasion (e.g., the end of the school 
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year). However, the use of difference scores 
and their logical extension—growth curve 
modeling (e.g., Bollen & Curran, 2006; 
Preacher, Wichman, MacCallum, & Briggs, 
2008)—represents a shift from between- to 
within-subjects models of change, with all the 
usual benefits of within-subjects designs.

Given availability of multiple repeated 
measures, the next questions concern how to 

model change within a growth modeling 
framework, how to conceive of individual dif-
ferences in aspects of change that might be 
amenable to intervention, and how to investi-
gate an ATI in a growth model. First, it is sen-
sible to determine an appropriate function 
relating achievement to time using an uncon-
ditional growth curve model. That is, a growth 
function needs to be identified that tracks 

Figure 3. Achievement as a function of time for three hypothetical learners.
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achievement over time for a typical learner 
from the population of interest. This function 
should fit the data well but should otherwise 
be as parsimonious as possible—that is, it 
should be a simple function with relatively 
few parameters.

Besides the traditional criteria of model fit 
and parsimony, another relevant dimension is 
the degree to which the growth function’s 
parameters are substantively interpretable. For 
example, if an intervention targets cumulative 
learning rate (the speed with which the acquisi-
tion of, say, new math concepts depends upon 
previously acquired skills taught in the same 
intervention), it is crucial that the growth func-
tion include a rate parameter that can be condi-
tioned on intervention status. If the intervention 
is designed to raise the ceiling on maximum 
vocabulary knowledge, the growth function 
applied to the data needs to have an upper 
asymptote parameter. Parameters that govern 
the behavior of growth functions, like asymp-
totes and rate parameters, are called aspects of 
change. In many cases relevant for ATI, an 
appropriate growth curve model would be a 
three-level nonlinear mixed model (occasion 
nested within learner nested within, say, class-
room or some other grouping that is random-
ized to treatment). Time becomes a Level 1 
predictor, person-level characteristics become 
Level 2 predictors of aspects of change, and 
classroom-level predictors (like intervention 
status) become Level 3 predictors of aspects of 
change and potential moderators of the effects 
of person characteristics.

Second, some thought should be given to 
how to incorporate individual differences in 
aspects of change. There are generally three 
ways to do this. The aspect of change can be 
fixed to a constant value if there is sufficiently 
strong theory to warrant such a constraint. For 
example, the lower and upper asymptotes of 
an S-shaped curve might be fixed to, say, 0.2 
and 1, respectively, to span the range from 
chance levels of performance to complete 
mastery on a multiple-choice test. Or the 
aspect of change can be freely estimated, in 
which case the data help determine the best 
estimate for the parameter. Or the aspect of 

change can be treated as a random coefficient, 
allowed to vary normally across learners. If 
the aspect of change is treated as a free param-
eter or as a random coefficient, it can be mod-
erated by treatment status to see how the 
intervention influences individual differences 
in aspects of change.

Third, how might aptitude be brought into 
the model? If aptitude and achievement are 
measured using different instruments, then 
aptitude can be included as a person-level pre-
dictor of any aspect of change. It is then pos-
sible for treatment status to moderate the 
extent to which aptitude predicts various 
aspects of change (an ATI). For example, per-
haps aptitude is highly predictive of the rate of 
approach to mastery for BAU learners but not 
predictive of rate for those in the intervention. 
Or perhaps low-aptitude intervention learners 
absorb knowledge at a slower rate than their 
BAU counterparts but retain it better, setting 
them up for achieving a higher asymptote 
later, whereas high-aptitude learners are not as 
responsive to treatment but also tend to have 
high asymptotes.

If the same instrument is used to measure 
both aptitude and achievement, then aptitude 
is simply the initial measurement of achieve-
ment, at a point in time when no treatment 
effect is hypothesized because the interven-
tion has not yet occurred. Theoretically it can 
still be used to predict aspects of change in 
individual learners’ trajectories when initial 
status (the intercept or lower asymptote, or 
some other aspect of change that codes indi-
vidual differences in aptitude just prior to 
intervention) is a random coefficient, capable 
of serving as a predictor of other aspects of 
change (Muthén & Curran, 1997).

Discussion

We applaud the authors in this special issue for 
bringing a timely and welcome focus to the 
influence of preintervention academic perfor-
mance on the effectiveness of interventions—
the classic yet elusive ATI. Taken together, 
articles in this special issue allow the field to 
synthesize current substantive findings on 



262 Exceptional Children 85(2) 

ATIs in educational intervention research in 
both reading and math domains. In this com-
mentary, our goal was to suggest ways to 
improve traditional ATI research, and we 
chose to highlight solutions to four limitations 
that have persisted across the past 40 years in 
the pursuit of ATIs in educational intervention 
research: (a) the separation of ATI effects into 
level-specific components; (b) understanding 
threats to, and improving statistical power for, 
detecting ATIs; (c) considering nonlinear apti-
tude–achievement models moderated by treat-
ment; and (d) reconceptualizing ATIs using 
longitudinal time–achievement models mod-
erated by treatment and aptitude. One can 
imagine an ideal educational intervention trial 
that combines elements of traditional ATI 
approaches with some of the suggestions we 
outlined here. Such a study would be preceded 
by an a priori power analysis and perhaps a 
pilot study to establish the likely functional 
form of learning across a wide range of apti-
tude scores. The model would involve separate 
estimation of within- and between-cluster 
effects and would not necessarily be limited to 
linear effects of aptitude and time. Although 
including all of these elements in a single 
study would likely be infeasible, it would 
nonetheless be profitable to consider some  
elements of what we have discussed in future 
studies and recognize the limitations inherent 
in traditional approaches. For example, fitting 
a linear model when the process under study is 
almost certainly nonlinear may be expedient 
but may destroy the model’s fidelity to the pro-
cess underlying the data. Multiple factors 
conspire to undermine statistical power; thor-
oughly understanding those factors can help 
researchers take steps to avoid them.

Greater progress can also be made by 
combining some of the strategies we sug-
gest. For example, the logic of separating 
within and between effects still applies when 
nonlinear models are used. If one has 
repeated measures nested within students, 
who in turn are nested in small groups, it is 
plausible for learners within groups to fol-
low an S-shaped curve as a function of time 
(at Level 1), and for the learners’ average or 
terminal achievement (at Level 2) to follow 

a different function of aptitude, and for treat-
ment to moderate parameters at either or 
both levels.

There are also many opportunities to go 
beyond the topics discussed here to advance 
the frontier of ATI research. For example, 
parametric models, whether linear or nonlin-
ear, constitute only one method to investigate 
interactions, and their limitation is that they 
require specifying the functional form of the 
interaction in advance of fitting the model. 
When the functional form of the interaction is 
unknown, however, semiparametric latent 
class models can be used to identify sub-
groups with distinct aptitude–achievement or 
time–achievement relationships, with treat-
ment condition predicting latent class mem-
bership (e.g., Sterba & Bauer, 2014), or local 
structural equation modeling (e.g., Hildeb-
randt, Wilhelm, & Robitzsch, 2009) can be 
used to identify varying patterns of effects 
across the range of a continuous moderator. 
These and other techniques bear consideration 
in future ATI studies.
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