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Simple slopes, regions of significance, and confidence bands are commonly used
to evaluate interactions in multiple linear regression (MLR) models, and the use of
these techniques has recently been extended to multilevel or hierarchical linear

modeling (HLM) and latent curve analysis (LCA). However, conducting these
tests andplotting the conditional relations is often a tedious and error-prone task.
This article provides an overview of methods used to probe interaction effects and
describes a unified collection offreely available online resources that researchers

can use to obtain significance testsforsimple slopes, compute regions of significance,
and obtain confidence bands for simple slopes across the range of the moderator
in the MLR, HLM, and LCA contexts. Plotting capabilities are also provided.

Keywords: interaction, Johnson-Neyman technique, latent curve analysis, multilevel mod-
eling, multiple regression

Hypotheses involving multiplicative interaction or moderation effects are com-
mon in the social sciences. Interaction effects are typically evaluated by testing the

significance of a multiplicative term consisting of the product between two or more
predictor variables controlling for associated lower order main effects (e.g., Cohen,

1978). When a significant interaction is found, it is common to further decompose

or "probe" this conditional effect to better understand the structure of the relation

(e.g., Aiken & West, 1991).

Although interactions arise in many seemingly disparate analytic frameworks,

interactions within these frameworks share a common computational form. In
a series of articles, we have explored these computational linkages within three

major analytic frameworks: the multiple linear regression (MLR) model (Bauer &
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Curran, 2005), the random effects multilevel/hierarchical linear model (HLM)

(Bauer & Curran, 2005; Curran, Bauer, & Willoughby, 2006), and the structural

equation-based latent curve analysis (LCA) model (Curran, Bauer, & Willoughby,

2004). In these articles we also describe a variety of specific tests that we believe are

helpful in the probing of complex interaction terms in MLR, HLM, and LCA.

Although we view these tests as potentially powerful and widely applicable, many

of the required values are computed by hand and these calculations can be quite cum-

bersome and consequently error-prone. The complexity of many of these tests also

may substantially reduce the likelihood that these methods will be used in practice.

Our goal here is to integrate across our three prior articles and capitalize on the

shared computational linkages in testing interactions in order to develop a set of freely

available online tools that automate the testing and plotting of these complex effects.

We begin by presenting a single shared notational system to define the general

estimation of two-way interactions. This general expression can equivalently define

higher order interactions stemming from MLR, HLM, and LCA. We briefly review

some methods available for the further probing and plotting of these effects. We

present online calculators designed to be easily accessible and to automate the

calculation of a variety of tests for probing interactions described in Bauer and Curran

(in press) and Curran et al. (2004, in press). Finally, we demonstrate our calculators

by probing an interaction in MLR.

Interactions

An interaction implies that the magnitude of the relation between one predictor and

the criterion varies as a function of at least one other predictor. It is often convenient

to think of one predictor as afocal predictor and all other predictors involved in

product terms with the focal predictor as moderators hypothesized to affect the

relationship between the focal predictor and the criterion (although this distinction

is arbitrary given the symmetry of the interaction). For simplicity, we will focus

primarily on the case where there is a single moderator of interest. We denote the

criterion y, the focal predictor x, and the moderator z. A general expression for a

regression equation involving a multiplicative interaction effect is:

Yi = YO + YlXi + 72 Z i + y 3xizi + 6"i (1)

where the ys represent path coefficients or regression weights and x and z are

typically centered about their respective means. The prediction equation is defined

as the expected value of y conditioned on specific values for x and z:

E [yI (x, z)] = ý + j'x + 2z + Q3 xz, (2)

where the carat symbol (A) represents the sample estimate of the corresponding

parameter. The test of the coefficient y3 in Equation 2 is an omnibus test of the

interaction effect (Aiken & West, 1991; Saunders, 1956).
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Simple Intercepts and Simple Slopes

Equation 2 can be rearranged in terms of a simple intercept and simple slope,
as follows:

E[yI (XIZ)] = (j' + 2Z)+(il + j 3z)x. (3)

This highlights the fact that the simple intercept (first bracketed term) and simple
slope (second bracketed term) for the regression of y on x vary as a function of z
(Aiken & West, 1991). The simple intercept and simple slope are compound
coefficients that can be compactly expressed as:

COO = 'o + y2z

,1 Y 1 + 73 Z. 
(4)

Because 60 and 61 are linear combinations of parameters and specific values of z,
it is useful to evaluate how the estimates change as the value of the moderator
changes-a topic we now review.

Probing Interactions in MLR, HLM, and LCA

Two approaches have been outlined in the literature for evaluating the form of
interactive effects: the simple slopes technique and the Johnson-Neyman technique.

Simple Slopes Technique

The traditional approach to probing significant interaction effects is to choose sev-
eral conditional values of z at which to evaluate the significance of the simple slope
for the regression of y on x (Aiken & West, 1991; Rogosa, 1980, 1981). The sig-
nificance of simple intercepts is rarely of interest, and thus is not covered here. For
any conditional value of the moderator(s), the significance of 6) may be found by
first deriving the variance of the simple slope. For example, the calculation of the
variance of 61 in Equation 4 is a simple function of the variances and covariances
of the parameter estimates:

var (Co, I z) = var ( #,) + 2z cov('l,• + z' var(' ) (5)

where var(.) and cov(-) are the corresponding elements from the sample estimate of
the asymptotic covariance (ACOV) matrix. The standard error of 6), SE6,, is simply
the square root of this quantity. Finally, we can form the critical ratio to perform a
significance test for the difference between Co1 and zero:

t = -n (6)
SE614
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the significance of which is determined by comparing the obtained t to a t distri-
bution at the desired cx level and degrees of freedom (df) = N - p - 1, where N is
the sample size and p is the number of predictors.

In order to employ the simple slopes method described above, conditional values
of the moderator, denoted cv2, must be chosen (what Rogosa, 1980, refers to as the
"pick-a-point" approach). For dichotomous moderators, cv, assumes values of the
dichotomy (usually 0 and 1). For continuous moderators, the specific choices for
cv, are less obvious and may be any value of scientific interest. In the absence of
theoretically meaningful values. Cohen and Cohen (1983) recommend choosing
values at the mean of z and at 1 SD above and below the mean of z.

The Johnson-Neyman Technique

Despite its broad usefulness, the simple slopes method has an important limitation:
the choices of cvz are ultimately arbitrary. An alternative is the Johnson-Neyman
(J-N) technique (Johnson & Neyman, 1936). The J-N technique essentially works
backwards from the critical ratio defined in Equation 6. Instead of calculating t
as a function of CoI and SE6, and a chosen value cv,, the J-N technique calcu-
lates the cv, that yields a specific t (usually the critical t value to obtain ap value
of .05 at a given df). The conditional values that are returned by the J-N technique
define the regions of significance on z, and represent the range of z within which
the simple slope of y on x is significantly different from zero at the chosen (X.
Assuming solutions exist, the result will be two values: upper and lower bound-
aries of the region of significance. In many cases, the regression of y on the focal
predictor is significant at values of the moderator that are less than the lower
bound and greater than the upper bound, while the regression is nonsignificant
at values of the moderator falling within the region. However, there are some
cases in which the opposite holds (i.e., the significant slopes fall within the region
boundaries).

Confidence Bands

Both the simple slopes and J-N techniques rely on traditional null hypothesis
testing logic. It is well known that confidence intervals (CIs) provide more infor-
mation than hypothesis tests, and methodologists increasingly recommend the use
of CIs in addition to, or in place of, hypothesis tests whenever possible (Wilkinson
& APA TaskForce, 1999). The general formula for a 100 x (1 - ox)% CI for a simple
slope (Cohen, Cohen, West, & Aiken, 2003) is:

CI(., = O1 ± tc,SE6,. (7)

Because the formula for SE6, relies on particular choices for z, CI6, varies as a
function of the moderator. When CIB, is plotted across all relevant values of z, the
result is a pair of confidence bands (Bauer & Curran, in press; Rogosa, 1980, 1981;
Tate, 2004).
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Interactions in HLM

The same methods used to represent interactions in MLR in terms of simple
intercepts and simple slopes (i.e., Equation 4) can also be used to represent inter-
actions in HLM and LCA. In each modeling context, the dependency of the crite-
rion on the focal predictor can be represented as a function of the moderator(s) by
defining two compound coefficients, 60 and Co.

In HLM with two predictors, interactions may occur between two Level 1
predictors (Case 1), between two Level 2 predictors (Case 2), or between Level 1
and Level 2 predictors (Case 3, or cross-level interaction). A cross-level (Case 3)
interaction occurs when the random slope of a Level 1 predictor is predicted by
a Level 2 predictor. This last type of interaction is probably most commonly
encountered in HLM, so we will focus on it here. In cross-level interactions, either
the Level I or Level 2 predictor may be chosen as the focal predictor. Typically,
however, it is the Level 1 predictor that is chosen to be the focal predictor. The
Level 1 equation is:

YYu = P0j + PjxY ,+ r,, (8)

where xy represents the Level 1 predictor for the ith individual nested within the
jth group. Because the intercept and slope in HLM are viewed as random variables,
they can be expressed in the Level 2 equations:

3Oj Y700 + Y01wj + 10j

Ou = Y10 + nwj + u(,

where wj represents the Level 2 predictor for thejth group. Substituting the Level 2
equations into Equation 8 results in the reduced form expression:

i=(YOO + OXU + + Y) + (Uoj + UijXY + 0) (10)

The prediction equation derived from Equation 10 is:

In Equation 11, the test of the coefficient 'x Iis an omnnibus test of the interaction effect.
Defining x as the focal predictor and w as the moderator results in the prediction
equation:

E[yI (x,w)] + (r I w)+ ( j +
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This rearrangement again highlights the simple intercept and slope of the regres-

sion of y on x at specific values of w. Using the same notation as before, these are

defined as

6= '00 + '01w
(12)

The simple slope, 6 , may be interpreted and evaluated using the simple slopes,

regions of significance, and confidence band strategies described earlier.

Interactions in LCA

The same methods used to represent interaction effects in MLR and BILM can

also be used to represent interactions in LCA, an application of structural equation

modeling (SEM). LCA represents the repeated measures of a dependent variable y

as a function of latent factors that capture different aspects of change, typically an

intercept factor (ih) and one or more slope factors (1p). The equation for the

repeated measures of y for individual i at time t is:

Yit = T1ai + 2'r-fip + it,, (13)

where ?. represents a fixed factor loading on the slope factor corresponding to a

value of the time metric (see Curran et al., 2004, for details).

The factors representing the intercept and slope then often serve as endogenous

(dependent) variables in other model equations. For instance, the latent curve

factors could be regressed on the exogenous predictor x:

Ta R.+ YAX + ýCai11PI = ttP + 72X! + ýPi
- + ~(14)

The reduced form equation is then:

Yit = (ý. + + 7Xy1x + 72X1x') + (ýai + ý1ik' + it). (15)

The fixed component (first part) of Equation 15 contains an intercept term (i.e., ,

conditional main effects for time (i.e., pp) and the exogenous predictor x (i.e., yi),

and the interaction of time andx (i.e., y2). Thus, the regression of y on time depends

in part on the level of x, so x can be considered the moderator and time the focal

predictor. Taking the expectation of Equation 15 and rearranging yields a prediction

equation that highlights the role of x as a moderator of the time effect (the slope of

the individual trajectories):

E[yf+ (+,x)] ( (j' + 1- 12X)X,. (16)
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This expression shows that LCA interactions may also be cast in terms of a simple
intercept and simple slope, &0 and 61, respectively:

0 + YX
C0 = +'y 2x. (17)

The techniques for calculating simple slopes, regions of significance, and confidence
bands described earlier all apply here as well.

Online Tools

Because these methods for evaluating interactions are not fully incorporated into
commonly used statistical software, we have developed a unified collection of online
resources that implement these techniques at: http://www.quantpsy.org. From a
link on this page, researchers may access a primer on regression techniques and any
of six interactive Web pages designed to facilitate the probing two-way and three-
way interactions in MLR, HLM, and LCA. We now briefly describe the contents
of these pages, followed by a worked example of a cross-level interaction in a
multilevel model.

At the bottom of the two-way interaction pages are tables where researchers may
enter information from analysis output. These tables require the user to input all four
estimated regression coefficients, the variances of these coefficients and two of
the covariances from the ACOV matrix, df, and c. By default, a is set equal to
.05, but this may be changed by the user. The tables contain optional sections
called "Points to Plot." Users may input values of the focal predictor here to obtain
coordinates useful in producing visual representations of interaction effects. These
sections assume that the x-axis on such a plot represents values of the focal pre-
dictor, the y-axis represents the dependent variable, and that separate lines are desired
for each conditional value of the moderator.

Once all the necessary information is entered, clicking on the "Calculate" button
will produce output in the "Output Window." If there is a problem, it will be noted
in the "Status" cell toward the middle of the table. The first two sections of the out-
put simply repeat the information entered into the table. The region of significance,
and simple intercepts and simple slopes calculated at the boundaries of this region,
are provided by default. If conditional values of the moderator are entered into the
table, the utility will also provide simple intercepts and simple slopes at each desired
value. If simple intercepts and simple slopes are required for more than three con-
ditional values of the moderator, the tables can be reused any number of times by
changing the desired conditional values and clicking on the "Calculate" button again.
Each line of output includes a point estimate of the simple intercept or simple slope
of interest, the standard error, a critical ratio, and a p value. Finally, if the "Points
to Plot" option is selected, coordinates for lines will be reported at the end of the
output. Contents of the output window are in plain text and may be copied and
pasted into any word processing program for further editing.
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The tables for three-way interactions are considerably larger than the two-way

interaction tables, primarily because many more elements of the ACOV matrix

must be entered, but they are entirely analogous to the two-way tables. The only

significant difference is that the three-way interaction tables enable the user to

request simple intercepts and simple slopes of y on x at conditional values of both

moderators z and w.
The HLM two-way interaction tool has three separate tables for the Case 1, Case 2,

and Case 3 interactions described above. In addition, the user has the option of

entering custom dffor tests of simple intercepts, tests of simple slopes, or both simple

intercepts and simple slopes. If either of these boxes is left blank, asymptotic z tests

will be conducted instead of t tests. The HEM three-way interaction tool is analogous

to the MLR three-way interaction tool. However, it is limited to the case in which

there is a cross-level interaction between a single Level 1 (focal) predictor and two

Level 2 moderators.
The LCA interaction tools are similar to the MLR and HLM tools. The LCA

two-way interaction tool contains two tables: one table is used for situations

involving time as the focal predictor and the other is used for situations involving

an exogenous predictor of slopes as the focal predictor. The LCA three-way inter-

action tool treats time as the focal predictor, and allows users to request simple

intercepts and simple slopes at conditional values of two exogenous predictors, x,

and x2."
If conditional values are entered for the moderator(s), these tools also produce

graphs of the simple regression lines for the focal predictor at those values. Specif-

ically, they generate R syntax that can be submitted to an Rweb server (or to a local

"R application for better resolution) via the click of a button to generate the plot.

"R syntax is also generated for the plotting of confidence bands, which again can be

submitted to R or Rweb with the click of a button to produce the plot.

An Example

We now provide an illustration of the MLR two-way interaction tool. For this

example we rely on data from the National Longitudinal Survey of Youth (NLSY).

Data consist of scores on measures of math ability (math; the Peabody Individual

Achievement Test math subsection) and associated predictor variables from 956 stu-

dents (52% female) ranging in age from 59 to 156 months. Of interest in this analysis

was the finding of a significant interaction between the predictors antisocial behavior

(antisocial) and hyperactivity (both centered) in predicting math test scores. The

model is of the same form as Equations 1-3, where antisocial takes the place of

x and hyperactivity takes the place of z, except that age, sex, grade, and minority

status were added as covariates. The results from fitting the model are reported in

Table 1. The main effect of antisocial is positive but nonsignificant, and the main

effect of hyperactive is negative and significant. In addition, the significant nega-

tive coefficient associated with the interaction term (-0.3977) indicates that the

relationship between antisocial and math tends to be more strongly negative for

individuals with higher overall hyperactivity.
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TABLE 1
Outputfor Antisocial x Hyperactivity Interaction With Asymptotic (Co) Variances

Effect Coefficient SE Critical Ratio

Intercept (yo) 38.0690 0.3224 118.08
Antisocial (yj) 0.0373 0.2681 0.14
Hyperactivity (y2) -0.7995 0.2148 -3.72
Anti. x hyper. (y3) -0.3977 0.1429 -2.78

Sample Asymptotic Covariance Matrix of the Regression Coefficients

Effect Intercept Antisocial Hyperactivity Anti. x Hyper.

Intercept 0.10394
Antisocial 0.01295 0.07186
Hyperactivity -0.00032 -0.02680 0.04614
Anti. x hyper. -0.02136 -0.01239 0.00031 0.02042

Descriptive Statistics

Variable Mean SD Minimum Maximum

Antisocial 0 1.342 -1.344 4.656
Hyperactivity 0 1.546 -1.940 3.060

Note. Results pertaining to covariates were obtained, but were omitted from this table because they are
not relevant for our calculations.

Probing the interaction further using our MLR two-way interaction tool provides
additional information to aid in the interpretation of this conditional effect. We entered
specific values of (centered) hyperactivity into the utility to assess the effect of
antisocial on math at specific conditional values of the moderator, in this case at the
mean and at 1 SD above and below the mean (i.e., where centered hyperactivity =
-1.546, 0, and +1.546). As hyperactivity increases, the slope relating math to anti-
social becomes more strongly negative. The simple slope is 0.652 at-1 SD (p -. 102,
not significant), 0.037 at the mean of hyperactivity (p = .889, not significant),
and -0.577 at +1 SD (p = .044, significant). Submitting the R syntax for the sim-
ple regression lines to the Rweb server produces the plot of these effects shown in
Figure 1.

Probing shows that the simple slope of math regressed on antisocial is significant
at only one of the chosen conditional values of hyperactivity; this finding adds
substantially to our understanding of the interaction effect. However, the choice of
±1 SD for the moderator was essentially arbitrary. Of more interest are the values
of hyperactivity for which the simple slope is statistically significant. The region of
significance on the moderator (hyperactivity) ranges from -2.320 to 1.493, indicating
that any given simple slope outside this range is statistically significant. Given that
centered hyperactivity ranges from about -1.94 to about +3.06, this indicates that the
effect of antisocial on math is significant only for relatively high observed values
of hyperactive. Submitting the second R program produces a plot of the confidence
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FIGURE 1. Mean plot illustrating the interaction of antisocial behavior and hyperactivity.
More negative slopes correspond to higher levels of hyperactivity.

bands (see Figure 2). The default values of the moderator (-10 and +10) were changed
to -3 and +3 in Figure 2 to better match the range of observed data. Because the
confidence bands do not include simple slopes of zero for values of hyperactivity
above 1.493, it can be concluded that the simple slope of math regressed on antisocial

is significantly different from zero for values of hyperactivity above this point.

Discussion

When a significant interaction is detected in MLR, HLM, or LCA, the inter-
pretation of the interaction becomes critically important. Aside from the point esti-
mate itself, much important information about the interaction can be obtained by
evaluating the simple slopes, regions of significance, and confidence bands. Indeed,
it is difficult to imagine a situation where the interpretation of an interaction would not

be improved by using these methods. Yet two issues have impeded the application
of these methods in practice: uncertainty that methods developed for MLR also
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FIGURE 2. Plot illustrating confidence bands for observed sample values of hyperactivity.

apply to HLM and LCA and a lack of implementation in software. As reviewed
here, however, these methods are equally valid and useful for all three statistical
models. Furthermore, the online tools described above now make these methods
freely available to any researcher, regardless of their statistical software of choice.
Together, we believe that these developments will enable applied researchers to
better interpret and communicate complex conditional effects in MLR, HLM, and
LCA, including both two-way and three-way interactions.
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