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1 Introduction

Language is an integral part of expressing ideas, so much so that the statistical
language(s) we understand may affect our ability to formulate ideas. One’s initial
statistics class consists of exposure to a new language; familiar words take on
new meaning, mathematical symbols are used to abbreviate entire paragraphs,
and you even learn a little Greek. Learning other dialects, for example structural
equation modeling (SEM) diagrams, expands one’s ability to posit and understand
statistical models. The numerous simultaneous regressions occurring in many SEM
diagrams would be difficult to understand as a list of equations, but these equations
become readily accessible when expressed in the language of SEM diagrams.
The representation of regression in diagram form allows for the formulation and
understanding of new ideas. Differential equations, and their component derivatives,
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constitute a language that is less often used in the social sciences; the few clear
exceptions like the Hessian matrix and calculation of the minima or maxima of
functions are in the vernacular of relatively few social scientists. Like learning the
language of SEM, learning the language of derivatives has the potential to change
the way we understand models with which we are familiar, and opens us to new
ways of formulating ideas.
In this chapter we present the idea that differential equation modeling is the

language of change. The meaning in this statement is twofold. In the literal sense
derivatives express the change in variables with respect to each other; differential
equation models—models that include derivatives—are models that express the
relations between the states of variables and how variables are changing. Derivatives
and differential equations provide a language that gives a framework for precisely
describing change. But this approach also provides a different way of understanding
many of the models of change that are currently being used in research; by
providing a unifying framework, differential equations have the potential to help in
identifying models that have been overlooked and therefore can identify unexplored
questions. By providing a means to alter how questions about change are being
asked, differential equation models constitute a language that could lead to changes
in the kinds of research being done.
This chapter begins by considering differential equations and derivatives in the

context of something familiar—ordinary linear regression. As the new language is
introduced, the chapter expands into other familiar models including hierarchical
linear models (HLMs) and latent growth curve models (LGCMs). These sections
introduce the derivative language framework as literally being a language for
describing change. We then consider the application of derivatives to the modeling
of intraindividual observations. The language framework is used to extend the idea
of differential equation modeling as the language of change so as to introduce
methods and models that are likely to be unfamiliar to many readers. Three
differential equation models will be presented, each of which provides cutting edge
questions that can be addressed using social science data.

2 Regression

Whether made explicit or not, early in statistics classes students are introduced to
the idea that mathematics can be used to address whether one variable is related
to another, and more specifically that the change in one variable can be related to
changes in another variable. This idea often begins with the case of relating central
tendency to group membership (i.e., t-tests), but becomes more general with the
introduction of ordinary linear regression. This idea gets a formal mathematical
representation,

y = β0+β1x+ ε, (1)
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Fig. 1 The figure (left) depicts a trajectory with a constant first derivative, and consequently a
second derivative equal to zero. The figure (right) depicts a trajectory where there is a change in
the first derivative with respect to time; that is, the second derivative is nonzero

where β0 represents the value of a variable y when x = 0, β1 expresses how changes
in a variable x are related to changes in y, and ε represents error. This seemingly
simple equation allows for significant amounts of statistical language to be taught,
including keywords like intercept and slope, statistic and parameter. Interpretation
of β0 and β1 also becomes an important exercise, at which point figures such as
Fig. 1 (left) may be used. In Fig. 1 it has been assumed that we are working with the
equation y = 5+ 2x, and therefore β0 = 5 is the value of y when x = 0. A series of
points (joined with a line) can then be drawn, substituting values x = 1,2,3 . . . and
solving for y. Earlier in your education, you may have been given a line and asked:
“what is the rise over the run?” Said another way, this question asks how much of a
change in y coincides with a specific amount of change in x (one unit); that is, what
is β1?
“Rise over run” can be equivalently expressed as “the change in y with respect

to the change in x.” In mathematics this is frequently expressed as dy
dx ; this is the

first derivative of y with respect to x. Instead of writing β1 it would be equally
appropriate to write

y = y0+

(
dy
dx

)
x+ ε, (2)

where y0 is the zeroth derivative which is the value of y at x = 0. This form
of the regression equation, in the authors’ experience, seems to appear rarely in
introductory statistics texts. One likely reason is that Eq. (2) may be perceived as
more complex than Eq. (1), even though these equations are equivalent. Another
reason may be that the equivalence of β1 and dy

dx is thought to be commonly
understood, so stating this explicitly in equations is considered unnecessary.
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Whatever the reason, by not being explicit that β1 is a derivative, useful language
has been set aside. Consider the quadratic model,

y = β0+β1x+β2x2+ ε. (3)

In presentations of this model, it is not unusual to hear that β2 is difficult to directly
interpret; so much so that efforts have been undertaken to reparameterize β0, β1,
and β2 so as to make the parameters more readily interpretable (Cudeck and du Toit
2002). Making the derivatives explicit, Eq. (3) is equivalent to

y = y0+

(
dy
dx

)
x+

1
2

(
d2y
dx2

)
x2+ ε. (4)

β2 in itself is difficult to understand, but twice this quantity is equal to the second

derivative, d2y
dx2
. The second derivative expresses how the first derivative dy

dx is
changing with respect to changes in x. That is, twice the quadratic parameter β2
conveys precisely how quickly the slope (first derivative) is changing for every unit
change in x.
A person’s score y based on Eq. (4) depends on three things: (a) the score at x= 0,

that is, the zeroth derivative, (b) the rate at which scores change with respect to x
(slope or first derivative) at x = 0, and (c) how the slope changes with respect to x
(second derivative). If x represents time and y position, derivatives can be discussed
drawing on the common experience of traveling in a vehicle. The zeroth derivative
is the position, or level in the case of a construct, at some point in time. The first
derivative, or change in position with respect to time, represents velocity (speed in
a particular direction). The second derivative, or change in velocity with respect to
time, corresponds to acceleration (positive or negative).
Early introduction of derivative language has the potential to provide a unifying

framework for understanding many models of change. Extending Eq. (4) to include
predictors of the estimated derivatives (parameters), as is often done in Hierarchical
Linear Modeling (HLM) or Multilevel Modeling (MLM), the language of deriva-
tives gives another way to understand the hypotheses being tested. Consider the
equations

yti = β0i +β1iTti +β2iT
2

ti + εti (5)

β0i = γ00+ γ01Zi + u0i

β1i = γ10+ γ11Zi + u1i

β2i = γ20+ γ21Zi + u2i,

where the dependent variable yti is measured at multiple times t for each individual i.
The effect of the predictor time (T ) allows for a linear relationship (β1i) with time
and the possibility that the slope (β1i at T = 0) may change with respect to time
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(β2i). Furthermore, each individual may have a different β0, β1, and/or β2; it is
hypothesized that individual differences in these parameters are related to a person’s
trait Zi.
Rewriting the equations expressed in Eq. (5) using derivative notation

y0i = γ00+ γ01Zi + u0i (6)(
dy
dT

)
i
= γ10+ γ11Zi + u1i (7)

1
2

(
d2y
dT 2

)
i
= γ20+ γ21Zi + u2i. (8)

These equations express that in HLM/MLM one is examining the relations between
the level (zeroth derivative) of a trait Z and derivatives expressing different aspects
of how the dependent variable y is changing with respect to time T . In Eq. (6), γ01
posits a relation1 between the zeroth derivative of the dependent variable y and the
trait Z. In Eq. (7), γ11 relates the first derivative of the dependent variable to the
trait. Finally, in Eq. (8), γ21 relates the second derivative of y to the trait. These three
equations ask qualitatively different questions. The first asks whether Z is related to
the level of y at T = 0; that is, a level–level relation. The second asks whether Z is
related to the velocity of y at T = 0; that is, a level–velocity relation. The third asks
whether Z is related to changes in velocity; that is, a level–acceleration relation.
Equations (5) and (6) through (8) show HLM/MLM as a series of differential

equations. Looking at these equations, and considering the relations between level,
velocity, and acceleration gives another way to understand this model in terms
of level–level questions (Eq. (6)), level–velocity questions (Eq. (7)), and level–
acceleration questions (Eq. (8)). Examining other models, and the relationships
between derivatives that are being modeled, provides a way to organize the
similarities and differences across a wide range of models of change. In the
next section we examine the LGCM, which can relate both similar and different
pairs of derivatives relative to HLM and therefore ask both similar and different
questions about change. The decision to use one over the other should be driven by
constraints such as the structure of the data collected, for exampleHLMs/MLMs can
handle individuals with variations in sampling interval more readily than LGCMs;
conversely, LGCMs can handle multiple dependent variables simultaneously. The
decision to use one over the other should not be driven by the perception that these
models are necessarily addressing different questions, as in some cases the questions
being asked are very similar.

1This relation could be expanded to indicate that parameters such as γ11 express the change in an
individual’s first derivative d

(
dy
dT

)
i
(numerator) divided by the change in the trait dZi.
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3 Latent Growth Curve Model

We posit an example where we consider the effect of Stress on Negative Affect
measured across the last 4 weeks of a semester in a hypothetical sample of
undergraduate students. A LGCM is posited, as in Fig. 2, such that changes in
stress result in changes to negative affect; a unidirectional relationship from stress
to negative affect has been posited only to simplify discussion and is not based
on theory. Typically the latent variables would be labeled “Intercept,” “Slope,” and
“Quadratic,” and the paths to the observed variables would all be fixed such that the
latent variables would correspond to the names they were given. It may not be clear,
however, what a quadratic–quadratic relationship implies. In Fig. 2, therefore, the
labels have been changed to “Level,” “Velocity,” and “Acceleration” to reflect that
the zeroth, first, and second derivatives, with respect to time, are being estimated; to
accomplish this, only the loadings of the quadratic factor are changed, and these are
merely multiplied by 1/2 as in Eq. (4).
There are many possible paths that could be drawn from stress to negative affect

(paths A through I). Some of these paths are familiar, such as paths A, B, and C
which ask level–level, level–velocity, and level–acceleration questions as in HLM.
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Fig. 2 A latent growth curve model which, with slightly modified fixed paths, expresses the
level, velocity, and acceleration in stress and negative affect as latent variables. Many possible
relationships between the stress and negative affect derivatives could be considered (paths A
through I). It should be noted that causal interpretations of this model may not make sense,
depending on how time has been coded. When Time= 1 is used as the initial time, paths D and
G suggest that later changes over the four observations could alter one’s initial level of Negative
Affect (i.e., time travel)
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LGCM allows for questions similar to HLM to be addressed, but also a multitude of
additional questions (paths D through I). What then is meant when one states that
stress and negative affect are related? Should we posit all paths?
When changed to level, velocity, and acceleration, it may be possible to argue

that there are only a few paths that are of theoretical interest. First one must consider
the dependent variable (negative affect): Do we wish to predict a person’s level of
negative affect at T = 0? Do we wish to predict a person’s velocity at T = 0? or Do
we wish to predict whether a person’s trajectory of negative affect is changing—
what traits are related to a person departing from their initial trajectory? The third
question is one about the acceleration in negative affect (second derivative; paths C,
F, and I). Turning to the predictor, what is it about stress that is related to changes in
the velocity of negative affect (i.e., acceleration)? Is one’s level of stress related to
changes in the velocity of negative affect? Or, is it that increases in stress are related
to changes in the velocity of negative affect? Or, is it the fact that one’s stress is
not just increasing, but increasing at a faster rate, that is related to changes in the
velocity of negative affect? These three questions are qualitatively different, and the
presence of any one relation does not necessarily imply anything about the presence
or lack of the other two relations.
The question “Is stress related to negative affect?” is too simple, as even limiting

ourselves to a unidirectional case implies nine possible relations as in Fig. 2 (paths
A through I), or evenmore if one considers higher order derivatives. Even narrowing
our interest to what is related to a change in the velocity of negative affect, there are
still multiple possibilities to consider (paths C, F, and I), each of which addresses a
qualitatively different question. What is it that most directly causes one’s negative
affect trajectory to curve (accelerate) in a negative direction—is it the specific
level of one’s stress, the fact that one’s stress has been increasing for several
weeks, or that one’s stress level is increasing at a faster and faster rate? Whatever
one’s response, the language of derivatives allows us to more clearly highlight the
questions addressed by the LGCM (as opposed to considering quadratic–quadratic
relations). The common language between this section and the previous section also
highlights that LGCM has the potential to address many of the questions addressed
by HLM (see Bauer 2003; MacCallum et al. 1997).

4 Derivative Language Framework

In this chapter we have introduced the language of derivatives in a manner intended
for a broad audience, and without requiring an introduction to calculus. Just
the realization that many common models contain parameters that express the
change in one variable with respect to another (derivatives), and labeling them as
level, velocity, and acceleration, has the potential to provide researchers a novel
language framework for understanding a variety of models. There are at least four
consequences of adopting the language of differential equations and derivatives.
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Table 1 Summary of derivatives related in several common methods for the analysis of change

Construct 2

y dy/dt d2y/dt2

x Correlationa

Ordinary Regressiona

SEMa

HLM/MLM
LGCM
GLLA/GOLD/LDE

Construct 1 dx/dt HLM/MLM
LGCM
LCS
LPM/CLPM
GLLA/GOLD/LDE

LGCM/PPM
LCS

GLLA/GOLD/LDE
d2x/dt2 HLM/MLMb

LGCMb

LCSb

GLLA/GOLD/LDE

LGCMb

LCSb

GLLA/GOLD/LDE

LGCMb

LCSb

GLLA/GOLD/LDE

SEM structural equation modeling, HLM/MLM Hierarchical Linear Modeling/Multilevel Model-
ing, PPM Parallel Process Modeling, LGCM latent growth curve modeling, LCS Latent Change
Scores, LPM/CLPM lagged panel modeling/cross-lagged panel modeling, GLLA/GOLD/LDE
Generalized Local Linear Approximation, Generalized Orthogonal Local Derivatives, Latent
Differential Equations
aMany, but not all applications
bApplications corresponding to this relationship are unusual

First, by thinking about the possible ways derivatives can be related—level–
acceleration relations, velocity–velocity relations, level–level relations, etc.—there
is a relatively limited number of combinations that are possible (nine, unless higher
order derivatives are considered). Rather than continue to present students an ever-
increasing number of models and methods for describing change, a matrix of
derivative relations could be introduced (e.g., Table 1). Each method/model would
fall into one or more of the finite number of combinations. The differences between
all methods/models that allow for level–acceleration questions to be addressed
could then be compared and contrasted. From the authors’ perspective, some of
the key differences are the kind of data to which a particular method/model is
typically applied, and the time scale over which derivatives are being estimated
(Deboeck et al. submitted).
Second, using this language framework allows for the presentation of a theory–

method Rosetta stone as in Table 2. Using level, velocity, and acceleration would
allow researchers to be much more specific with regard to theories of change.
But as these words are directly related to the zeroth, first, and second derivatives,
the mathematical interpretation of these words is very precise. The challenging
endeavor of translating theory into mathematics can then be made much more
precise. Moreover, in areas where theory is rich, use of this language may drive
the development of new, more appropriate models.
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Table 2 Summary of several equivalent ways to express the zeroth through second derivatives

Characteristic of scores Derivative Name Graphical depiction Notation

Score at some time 0th Level Single point y
Rate at which level is changing 1st Velocity Straight line dy/dt
Rate at which velocity is changing 2nd Acceleration Curved line d2y/dt2

Third, this framework would allow for more detailed and accurate interpretation
of results. Putting into words the differences between Eqs. (6) through (8), or paths
A through I in Fig. 2, may be challenging. By highlighting that the parameters
and latent variables can take on names associated with change—level, velocity,
acceleration—may allow the hypotheses being tested to be more readily put into
words.
Fourth, this new framework provides a structure that allows for the understanding

of new methodology relative to well-known models. The following section intro-
duces three differential equations that can be used to model the complex, nonlinear
changes in studies of intraindividual variability. These models will be introduced
relative to the more familiar LGCM. In introducing these newer methods, we
highlight some new questions that become accessible using the derivative language
framework.

5 Modeling Intraindividual Observations

The collection of repeated, intraindividual measurements on psychological and
behavioral variables presents a new challenge for modeling. To provide an example
of these challenges, we take as a motivating example daily measurements of positive
and negative affect from the Notre Dame Study of Health & Well-being. Figure 3
shows estimates of positive affect measured over time, representing a sample of
everyday positive affect (i.e., not following any particular stressor). One way to
model these data would be to consider an HLM or LGCM, which would give some
impression of the overall trajectory. This trajectory might be related to changes in
season, or other macrotemporal changes occurring in the participants’ lives but not
directly related to the daily regulation of emotions. Moreover, HLM, LGCM, and
many other models designate the variation around the overall trajectory as error,
when in fact it might be the case that characteristics of this variability are related to
important differences between individuals, such as resiliency.
As introduced in the previous section, and depicted in Fig. 4a, the latent variables

of an LGCM can be used to estimate the level at T = 0, the velocity at T = 0,
and the acceleration across a series of observations. This model is closely related
to Latent Differential Equation Modeling (LDE; Boker et al. 2004), a method for
modeling the rich, complex nonlinearity of intraindividual variability. Despite the
differences the names may convey, these methods have many similarities: both can
estimate the same derivatives and allow for the same relations between derivatives
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Fig. 3 Plots of positive affect measured over the course of 56 days. The plots contain the data from
two different older adults. The gray lines are based on the estimated values of individual-specific
quadratic regression models. Positive affect was measured using the PANAS (Watson et al. 1988)
administered to older adults in paper and pencil daily diary self-report

to be examined (e.g., level–acceleration relations). The key difference between the
two methods is the time scale over which they are applied; rather than estimate
derivatives over the entire period of observations as in Fig. 4a, LDE estimates
derivatives over the course of just a few observations as in Fig. 4b. The model in
Fig. 4b may appear an impossible model to fit, but this is not the case once the data
are reorganized into what is called an embedded matrix. In a manner akin to the
depiction in Fig. 4c, one can rearrange data such that each row of a matrix consists of
a subset of a longer time series. For example, given a time series y = y1,y2,y3, . . . ,yt

one can create an embedded matrix

⎡
⎢⎢⎢⎢⎢⎣

y1 y2 y3 y4
y2 y3 y4 y5
y3 y4 y5 y6
...

...
...

...
yt−3 yt−2 yt−1 yt

⎤
⎥⎥⎥⎥⎥⎦

(9)
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Fig. 4 Three differing versions of a latent growth curve model. (a) The LGCM can be applied
to entire time series, providing a single estimate of the derivatives. (b) Many small LGCMs can
be applied to a time series to generate estimates of derivatives at many different times across the
series. (c) A revisualization of model (b) where the small LGCMs have been stacked. This both
aids in estimation and allows one to think about the creation of an embedded data matrix which
involves arranging data much as the observed variables have been stacked in this figure
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Fig. 5 By applying the latent growth curve model to short series of observations (small circles),
the level (bold, larger circles), velocity (straight, light gray lines), and acceleration (curved, dark
gray lines) can be estimated at many different times across a time series. The gray acceleration
lines have been drawn such that they represent the slope that is expected at some time before/after
the point at which the estimate was created; for example, for the estimate at day 23, the acceleration
is such that a velocity of nearly zero would be estimated for day 20–21, and a relatively steep
positive slope would be estimated for day 25–26. Confidence intervals exist for the derivative
estimates, but have not been displayed to simplify the figure

where the first three rows of the matrix match the observed variable labels in Fig. 4c.
Readers interested in more specifics about applying LDE are referred to Boker et al.
(2004) and Deboeck (2011).
What does changing the time scale of derivative estimation buy us? In a LGCM

we would have single estimates of level, velocity, and acceleration. In LDE we have
estimates of level, velocity, and acceleration across an individual’s time series, and
therefore can observe how these values are changing, as in Fig. 5. In this figure, the
observations (small circles) are used to estimate the level (bold circles), velocity
(straight, light gray lines), and acceleration (curved, dark gray lines). The challenge
lies in finding predictors of the derivatives across time. If the language of derivatives
is applied to theoretical models, one could then translate theory into testable models
to address research questions. Alternatively, data can be explored by examining
predictors of different derivatives. As with the LGCM presented earlier, there are
many possible derivative relations that could be considered (Fig. 2). Being precise
as to how the level, velocity, and acceleration of variables affect each other over the
span of a few days, however, is largely unexplored territory for many fields of study.
The following sections introduce three differential equation models. The models

can be implemented in a variety of ways, including LDE (Boker et al. 2004),



Differential Equation Modeling Is the Language of Change 439

0

A
cc

el
er

at
io

n 
(d

2 x
/d

t2 )

Equilibrium

Level (x)

day

P
os

iti
ve

 A
ffe

ct

Fig. 6 A linear regression of level on acceleration (solid line, left) describes a model that implies
that as one’s level on a construct (circles, right) gets far from equilibrium (horizontal line, right)
there is an acceleration (gray curves, right) in the direction of the equilibrium. As regressing
level on acceleration is a linear relationship (solid line, left), one can borrow ideas from linear
regression; for example, using piecewise regression one could allow the level–acceleration relation
to be different when one is above equilibrium compared to when one is below equilibrium (solid
line below equilibrium, dashed line above equilibrium)

Generalized Orthogonal Linear Derivative Estimates (Deboeck 2010), the Exact
Discrete Model (Oud and Jansen 2000; Voelkle et al. 2012) and Generalized Local
Linear Approximation (Boker et al. 2008; Boker and Nesselroade 2002). Through
the three models that we present, we explore a few ideas of how relating derivatives
may give some insight into certain processes. These models have not been applied in
a wide range of contexts, so for many areas of the social sciences these are examples
of how differential equations can provide a language to address new questions about
change.

5.1 Model 1

The first model considers only a single variable—positive affect. As with the
LGCM, we focus on the questions: What leads to changes in the trajectory of
positive affect? and What is related to positive affect acceleration? But now these
questions are being considered in the context of having made multiple derivative
estimates over a time series as in Fig. 5. One way to model these data would be
to posit additional variables, the derivatives of which might explain positive affect
acceleration. Another option is to consider how the level, velocity, and acceleration
estimates of positive affect might be related to each other.
For example, consider the linear relation (solid line) that has been drawn between

the acceleration and level of positive affect in Fig. 6 (left). The interpretation of this
relation is interesting, as when the level of positive affect is high there is negative
acceleration; conversely, when positive affect is low, there is positive acceleration.
This is depicted in another way in Fig. 6 (right). Such a relation would suggest that
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if one were near some average or typical level of positive affect (horizontal line)
there might not be much change. But if one develops a high value of positive affect,
negative acceleration is expected; the slope is changing so that the upward trajectory
is not maintained, and eventually a negative trajectory will occur. The inverse is true
for a low positive affect score.
This is one possible model of homeostasis or self-regulation. There is a typical

state, or equilibrium, around which affect is expected to vary. Moreover, when
affect is displaced far from equilibrium in either direction, there is a relation
with an acceleration in the opposite direction, suggesting a change in slopes that
would result in changes towards equilibrium. This model does not specify the
mechanisms that lead to self-regulation, but it may be useful for characterizing how
quickly individuals move towards and away from equilibrium; that is, do the gray
acceleration curves in Fig. 6 (right) have a very steep or very shallow u-shape? The
relationship in Fig. 6 can be written as the differential equation

d2x
dt2

= β x+ ε, (10)

which expresses that the second derivative (acceleration) is related to the zeroth
derivative (level) times β plus error ε. The relationship β—which expresses how
changes in the level of the self-regulating variable are related to changes in the
acceleration of the same variable—is related to how quickly people return to, and
move away from, their equilibrium state. For examples of papers implementing this
model, see Bisconti et al. (2006), Boker and Laurenceau (2005), Montpetit et al.
(2010), and Nicholson et al. (2011).
As the relationship in Fig. 6 and Eq. (10) consists of a linear regression, one can

draw on familiarity with regression to inform how this model could be modified for
different contexts. For example, the present model assumes the same relationship
between acceleration and level regardless of whether one is above or below
one’s equilibrium. Perhaps it is expected that the level–acceleration relation above
equilibrium is different than when it is below equilibrium; the rate at which one
returns to equilibrium differs above and below one’s equilibrium (see Fig. 6, left).
This would correspond to a different slope above and below equilibrium, as depicted
with the solid line below equilibrium and the dashed line above equilibrium. One
could allow for the differing slopes using piecewise regression, using the equation

d2x
dt2

= β1x+β2x2+ ε. (11)

where x2 is coded to be zero for negative values of x, and x2 would be equal to x for
positive values of x.
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Fig. 7 Simulated plots of differing types of trajectories observed when measuring negative affect
in a sample of older adults

5.2 Model 2

Models of self-regulation may be reasonable first approximations in many contexts;
as in any domain, however, application of these models will require refinement.
Figure 7 shows plots that are not atypical of what is observed when examining
negative affect in older adults (Ram 2011). Some of the data patterns might be
reasonably characterized using a model of self-regulation; there appears to be some
equilibrium state around which an individual varies (Fig. 7, left). It is not unusual,
however, to also observe patterns such as in Fig. 7 (right). In this figure, there
appears to be a floor effect. Initially, one may expect this is due to a measurement
problem, which could be solved by including items that would be more commonly
endorsed. Attempts to take such a step, however, appear to mitigate but do not
fully alleviate the presence of floor effects (Deboeck and Bergeman 2013). When
examining negative affect, there appears to be a large proportion of individuals who
do not follow a self-regulation-like model, but rather appear to register very low
levels of negative affect that on occasion will increase in response to events.
One idea that has been proposed for modeling these data is the differential

equation model

dx
dt

= β x+ ε, (12)

where the slope between days (first derivative) is related to the level of negative
affect plus error (Deboeck and Bergeman 2013). Unlike other models, the errors
in this model are assumed to consist of only positive values; for example, ε could
follow a gamma distribution. If the errors are all positive, and the values of x are
all positive, the value of β is required to be negative, otherwise scores would be
required to monotonically increase for the duration of the study.
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Fig. 8 Examples of the trajectories (right column) that occur from recording the height of the
liquid in a simulation of two reservoirs (left column). In the reservoir in the top row, the rate of
liquid (gray) inflow and outflow are approximately balanced; in this case, the reservoir always
has liquid, although its level fluctuates around an equilibrium-like value. In the reservoir in the
bottom row, the outflow is faster than the inflow; consequently, the trajectory often approaches the
minimum value (empty reservoir) except when a large input event occurs

A metaphor for the behavior of this model is that of a reservoir, as in Fig. 8 (left
column). The negative affect reported on any given day corresponds to the height
(level) of the liquid in this reservoir. Above the reservoir is a pipe that adds liquid
to the reservoir, increasing the height of the liquid; the added liquid corresponds
to any events perceived as increasing one’s negative affect. There is also a pipe at
the bottom of the reservoir that allows the liquid to flow out of the reservoir; this
corresponds to one’s ability to dissipate negative affect.
When the input (inflow) and dissipation (outflow) rates are approximately

balanced, the trajectory appears very much like someone who is self-regulating
(Fig. 8, top row). If one’s dissipation rate is larger than the rate of input, however,
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Fig. 9 A cross-lagged panel model

there is a tendency for floor effects to occur (Fig. 8, bottom row).2 This model is
one example of when a single differential equation can produce time series that
appear qualitatively different, or time series with differing distributions for the
dependent variable. Suchmodelsmay be useful for identifying important parameters
for characterizing intraindividual variability. Initially, it will be important to show
how the average perceived input and dissipation parameters differentially relate
to traits in the literature, but eventually these parameters may help to parse out
similarities and differences between traits as well as identify traits that have been
overlooked.

5.3 Model 3

The presentation of Models 1 and 2 has focused on new questions related to
characterizing intraindividual variability and the relationship between different
levels of the same variable that can be addressed using differential equations. The
language of differential equations also has the potential to give new insight into
old problems. The cross-lagged panel model (CLPM) in Fig. 9 has often been used
in applications of longitudinal mediation. The ability to make a causal inference
with this model is often stronger, although arguably not complete, because of the

2Videos demonstrating the evolution of these systems have been posted on the web site of the first
author.
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ability to test the directionality of relations such as Xt to Mt+1 versus Mt to Xt+1.
One limitation of drawing inferences with the CLPM is that inferences are limited
to the specific lag at which data are collected (Cole and Maxwell 2003; Gollob and
Reichardt 1987, 1991). Consequently, how to go about collecting data such that one
selects the “correct” lag becomes a thorny issue, as the “correct” lag for one effect
may not be the “correct” lag for another effect, and differing lags may be required
for variables to reach their maximal influence (Cole and Maxwell 2003).
The CLPM is a discrete time model, as time is only implicitly considered

through the order of the observations, but never explicitly considered through the
specification of the time between observations (Voelkle et al. 2012). An alternative
way of modeling data similar to the CLPM is by specifying a differential equation
model that describes the underlying process that is generating the data. With such
a model it would be possible to estimate the expected value of each variable at
all times across the duration of the study, as time is explicitly considered in such
a model. The expected values of the variables are calculated by integrating the
differential equation model from some time t to some later time t + δ .
One differential equation model that has been implemented frequently across

many literatures is the model

dx
dt

= Ax+ ε, (13)

where the key difference with respect to Eq. (12) is that the errors are no longer all
positive. Rather, ε is usually replaced with a continuous-time process that generates
independent, normally distributed observations when integrated over some period
of time (see Voelkle et al. 2012, for details). While Eqs. (12) and (13) appear very
similar, the change in the distribution of the stochastic errors ε results in very
different interpretations of β and A; while β addresses only the decay to zero, A
is related to both increases and decreases that return the system to its steady state
(see Deboeck and Boker in press, for examples and more details). The model in
Eq. (13) can be rewritten in matrix form:

dX
dt

= AX+ ε, (14)

so as to allow it to be fit to more than one variable at a time, as in the CLPM in
Fig. 9.
One advantage to using a differential equation model in this context is that the

estimated parameters (e.g.,A) are independent of lag; that is, they do not depend on
the spacing between repeated observations. Moreover, these parameters can be used
to solve for the expected model parameters for differing lags; the lags for which
one solves are not limited to those measured in one’s data, although one should be
cautious about examining lags that extrapolate beyond one’s data. Figure 10 shows
an example of the results that can be produced using differential equation models
(Deboeck and Preacher 2013); the values of the lines, for any particular lag, can be
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Fig. 10 Estimates based on differential equation model parameters of how the cross-lagged panel
values (Discrete Time Parameters) change as a function of lag. The values of the lines, for any
particular lag, can be interpreted as the parameters that would be expected if the cross-lagged
panel model in Fig. 9 were fit to data with that particular lag. The maximal and minimal points
have been marked with a circle, and the name of each effect is indicated on the right. The X to Y
total effect represents the sum of the direct and indirect effects of X on Y

interpreted as the parameters that would be expected if the CLPM in Fig. 9 were fit to
data with that particular lag assuming Eq. (14). Consequently, this figure shows how
the discrete-time CLPM paths would be expected to change if data with differing
lags were analyzed. While in a CLPM the results are typically presented for a single
lag, corresponding to a single vertical slice through Fig. 10, with the differential
equation model there is the potential to estimate relationships for many possible
lags.

6 Concluding Remarks

In this chapter, the language of derivatives was introduced, and it was demonstrated
how this language could be applied to familiar models to facilitate the appropriate
application of these models to research questions related to change (e.g., HLM and
LGCM). By using the language in Tables 1 and 2, precision in the specification of
theories about change can be improved, methodology can be more easily identified,
and accuracy of interpretation of results can be ensured. Perhaps most encouraging,
this language framework also provides a structure within which new methods
and models of change can be introduced, thus creating the potential to open new
ways of formulating questions and ideas, such as those related to the analysis of
intraindividual variability. Three models were explored to highlight some of the
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ways that dynamic, nonlinear, intraindividual variability can be characterized, and
how these models have the potential to shed new light on old problems such as the
dependency of results on sampling rate.
Curriculum used to train researchers on how to analyze research questions related

to change already integrates some of the concepts presented in this chapter. Unfor-
tunately, derivatives and differential equations are seldom presented in introductory
texts, perhaps under the guise of simplifying the presentation of statistics. We
propose this is a disservice to researchers as derivatives provide an appropriate
framework to analyze change. Without training in the language of differential
equation models, an incoherent framework may be presented for the different
analytic approaches available for testing similar models. Without the Rosetta stone
of derivatives, it is more difficult for researchers to integrate different approaches
and systematically and effectively match their research question about change to
the correct model. Rather than learning what makes models different, this approach
first identifies the types of derivative relations present, and subsequently identifies
key differences between models with differing names (i.e., LGCM versus LDE).
Differential equations have the potential to change the way we think about

change, subsequently impacting the research questions asked and consequently the
models fit. This is especially warranted given the increased focus on intraindividual
variability that is occurring in many fields. Future decades promise to bring
more application of statistics to individual lives, whether through personalized
medicine, ecological momentary interventions, or other means. Learning the lan-
guage of derivatives opens the floodgates to characterizing the rich complexity of
intraindividual variability with interesting parameters that may be informative of
unobserved processes. As with all languages, fluency takes practice; but fluency
also provides a perspective, understanding, and beauty that is nearly unobtainable
through translation.
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