Why dividing by n — 1 yields an unbiased estimate of the population variance
Kristopher J. Preacher

2/15/12

First, prove that E [xf] =o' +u’:

o’ = E[(xl. —E[x.])q
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= E[x’ |-2uE[x]+E[ 4 ]
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It follows that E [xf] =0’ + 1. We make use of this identity in the following.



Exhibit 1: The expectation of the sample variance (dividing by n) leads to a biased estimate

of o*:
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...which underestimes o by a factor of -1

n—1

n n



Exhibit 2: The expectation of the sample variance (dividing by n — 1) leads to an unbiased
estimate of o’ :
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